mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
163 lines
5.0 KiB
Python
163 lines
5.0 KiB
Python
import os
|
|
from enum import Enum
|
|
from pathlib import Path
|
|
from typing import Literal, Optional
|
|
|
|
import torch
|
|
|
|
import invokeai.backend.util.logging as logger
|
|
from invokeai.app.services.config import InvokeAIAppConfig
|
|
|
|
from .base import (
|
|
BaseModelType,
|
|
EmptyConfigLoader,
|
|
InvalidModelException,
|
|
ModelBase,
|
|
ModelConfigBase,
|
|
ModelNotFoundException,
|
|
ModelType,
|
|
SubModelType,
|
|
calc_model_size_by_data,
|
|
calc_model_size_by_fs,
|
|
classproperty,
|
|
)
|
|
|
|
|
|
class ControlNetModelFormat(str, Enum):
|
|
Checkpoint = "checkpoint"
|
|
Diffusers = "diffusers"
|
|
|
|
|
|
class ControlNetModel(ModelBase):
|
|
# model_class: Type
|
|
# model_size: int
|
|
|
|
class DiffusersConfig(ModelConfigBase):
|
|
model_format: Literal[ControlNetModelFormat.Diffusers]
|
|
|
|
class CheckpointConfig(ModelConfigBase):
|
|
model_format: Literal[ControlNetModelFormat.Checkpoint]
|
|
config: str
|
|
|
|
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
|
assert model_type == ModelType.ControlNet
|
|
super().__init__(model_path, base_model, model_type)
|
|
|
|
try:
|
|
config = EmptyConfigLoader.load_config(self.model_path, config_name="config.json")
|
|
# config = json.loads(os.path.join(self.model_path, "config.json"))
|
|
except Exception:
|
|
raise Exception("Invalid controlnet model! (config.json not found or invalid)")
|
|
|
|
model_class_name = config.get("_class_name", None)
|
|
if model_class_name not in {"ControlNetModel"}:
|
|
raise Exception(f"Invalid ControlNet model! Unknown _class_name: {model_class_name}")
|
|
|
|
try:
|
|
self.model_class = self._hf_definition_to_type(["diffusers", model_class_name])
|
|
self.model_size = calc_model_size_by_fs(self.model_path)
|
|
except Exception:
|
|
raise Exception("Invalid ControlNet model!")
|
|
|
|
def get_size(self, child_type: Optional[SubModelType] = None):
|
|
if child_type is not None:
|
|
raise Exception("There is no child models in controlnet model")
|
|
return self.model_size
|
|
|
|
def get_model(
|
|
self,
|
|
torch_dtype: Optional[torch.dtype],
|
|
child_type: Optional[SubModelType] = None,
|
|
):
|
|
if child_type is not None:
|
|
raise Exception("There are no child models in controlnet model")
|
|
|
|
model = None
|
|
for variant in ["fp16", None]:
|
|
try:
|
|
model = self.model_class.from_pretrained(
|
|
self.model_path,
|
|
torch_dtype=torch_dtype,
|
|
variant=variant,
|
|
)
|
|
break
|
|
except Exception:
|
|
pass
|
|
if not model:
|
|
raise ModelNotFoundException()
|
|
|
|
# calc more accurate size
|
|
self.model_size = calc_model_size_by_data(model)
|
|
return model
|
|
|
|
@classproperty
|
|
def save_to_config(cls) -> bool:
|
|
return False
|
|
|
|
@classmethod
|
|
def detect_format(cls, path: str):
|
|
if not os.path.exists(path):
|
|
raise ModelNotFoundException()
|
|
|
|
if os.path.isdir(path):
|
|
if os.path.exists(os.path.join(path, "config.json")):
|
|
return ControlNetModelFormat.Diffusers
|
|
|
|
if os.path.isfile(path):
|
|
if any([path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt", "pth"]]):
|
|
return ControlNetModelFormat.Checkpoint
|
|
|
|
raise InvalidModelException(f"Not a valid model: {path}")
|
|
|
|
@classmethod
|
|
def convert_if_required(
|
|
cls,
|
|
model_path: str,
|
|
output_path: str,
|
|
config: ModelConfigBase,
|
|
base_model: BaseModelType,
|
|
) -> str:
|
|
if cls.detect_format(model_path) == ControlNetModelFormat.Checkpoint:
|
|
return _convert_controlnet_ckpt_and_cache(
|
|
model_path=model_path,
|
|
model_config=config.config,
|
|
output_path=output_path,
|
|
base_model=base_model,
|
|
)
|
|
else:
|
|
return model_path
|
|
|
|
|
|
def _convert_controlnet_ckpt_and_cache(
|
|
model_path: str,
|
|
output_path: str,
|
|
base_model: BaseModelType,
|
|
model_config: ControlNetModel.CheckpointConfig,
|
|
) -> str:
|
|
"""
|
|
Convert the controlnet from checkpoint format to diffusers format,
|
|
cache it to disk, and return Path to converted
|
|
file. If already on disk then just returns Path.
|
|
"""
|
|
app_config = InvokeAIAppConfig.get_config()
|
|
weights = app_config.root_path / model_path
|
|
output_path = Path(output_path)
|
|
|
|
logger.info(f"Converting {weights} to diffusers format")
|
|
# return cached version if it exists
|
|
if output_path.exists():
|
|
return output_path
|
|
|
|
# to avoid circular import errors
|
|
from ..convert_ckpt_to_diffusers import convert_controlnet_to_diffusers
|
|
|
|
convert_controlnet_to_diffusers(
|
|
weights,
|
|
output_path,
|
|
original_config_file=app_config.root_path / model_config,
|
|
image_size=512,
|
|
scan_needed=True,
|
|
from_safetensors=weights.suffix == ".safetensors",
|
|
)
|
|
return output_path
|