mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
149 lines
5.3 KiB
Python
149 lines
5.3 KiB
Python
import json
|
|
import os
|
|
from enum import Enum
|
|
from pathlib import Path
|
|
from typing import Literal, Optional
|
|
|
|
from omegaconf import OmegaConf
|
|
from pydantic import Field
|
|
|
|
from invokeai.app.services.config import InvokeAIAppConfig
|
|
from invokeai.backend.model_management.detect_baked_in_vae import has_baked_in_sdxl_vae
|
|
from invokeai.backend.util.logging import InvokeAILogger
|
|
|
|
from .base import (
|
|
BaseModelType,
|
|
DiffusersModel,
|
|
InvalidModelException,
|
|
ModelConfigBase,
|
|
ModelType,
|
|
ModelVariantType,
|
|
classproperty,
|
|
read_checkpoint_meta,
|
|
)
|
|
|
|
|
|
class StableDiffusionXLModelFormat(str, Enum):
|
|
Checkpoint = "checkpoint"
|
|
Diffusers = "diffusers"
|
|
|
|
|
|
class StableDiffusionXLModel(DiffusersModel):
|
|
# TODO: check that configs overwriten properly
|
|
class DiffusersConfig(ModelConfigBase):
|
|
model_format: Literal[StableDiffusionXLModelFormat.Diffusers]
|
|
vae: Optional[str] = Field(None)
|
|
variant: ModelVariantType
|
|
|
|
class CheckpointConfig(ModelConfigBase):
|
|
model_format: Literal[StableDiffusionXLModelFormat.Checkpoint]
|
|
vae: Optional[str] = Field(None)
|
|
config: str
|
|
variant: ModelVariantType
|
|
|
|
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
|
assert base_model in {BaseModelType.StableDiffusionXL, BaseModelType.StableDiffusionXLRefiner}
|
|
assert model_type == ModelType.Main
|
|
super().__init__(
|
|
model_path=model_path,
|
|
base_model=BaseModelType.StableDiffusionXL,
|
|
model_type=ModelType.Main,
|
|
)
|
|
|
|
@classmethod
|
|
def probe_config(cls, path: str, **kwargs):
|
|
model_format = cls.detect_format(path)
|
|
ckpt_config_path = kwargs.get("config", None)
|
|
if model_format == StableDiffusionXLModelFormat.Checkpoint:
|
|
if ckpt_config_path:
|
|
ckpt_config = OmegaConf.load(ckpt_config_path)
|
|
in_channels = ckpt_config["model"]["params"]["unet_config"]["params"]["in_channels"]
|
|
|
|
else:
|
|
checkpoint = read_checkpoint_meta(path)
|
|
checkpoint = checkpoint.get("state_dict", checkpoint)
|
|
in_channels = checkpoint["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
|
|
|
|
elif model_format == StableDiffusionXLModelFormat.Diffusers:
|
|
unet_config_path = os.path.join(path, "unet", "config.json")
|
|
if os.path.exists(unet_config_path):
|
|
with open(unet_config_path, "r") as f:
|
|
unet_config = json.loads(f.read())
|
|
in_channels = unet_config["in_channels"]
|
|
|
|
else:
|
|
raise InvalidModelException(f"{path} is not a recognized Stable Diffusion diffusers model")
|
|
|
|
else:
|
|
raise NotImplementedError(f"Unknown stable diffusion 2.* format: {model_format}")
|
|
|
|
if in_channels == 9:
|
|
variant = ModelVariantType.Inpaint
|
|
elif in_channels == 5:
|
|
variant = ModelVariantType.Depth
|
|
elif in_channels == 4:
|
|
variant = ModelVariantType.Normal
|
|
else:
|
|
raise Exception("Unkown stable diffusion 2.* model format")
|
|
|
|
if ckpt_config_path is None:
|
|
# avoid circular import
|
|
from .stable_diffusion import _select_ckpt_config
|
|
|
|
ckpt_config_path = _select_ckpt_config(kwargs.get("model_base", BaseModelType.StableDiffusionXL), variant)
|
|
|
|
return cls.create_config(
|
|
path=path,
|
|
model_format=model_format,
|
|
config=ckpt_config_path,
|
|
variant=variant,
|
|
)
|
|
|
|
@classproperty
|
|
def save_to_config(cls) -> bool:
|
|
return True
|
|
|
|
@classmethod
|
|
def detect_format(cls, model_path: str):
|
|
if os.path.isdir(model_path):
|
|
return StableDiffusionXLModelFormat.Diffusers
|
|
else:
|
|
return StableDiffusionXLModelFormat.Checkpoint
|
|
|
|
@classmethod
|
|
def convert_if_required(
|
|
cls,
|
|
model_path: str,
|
|
output_path: str,
|
|
config: ModelConfigBase,
|
|
base_model: BaseModelType,
|
|
) -> str:
|
|
# The convert script adapted from the diffusers package uses
|
|
# strings for the base model type. To avoid making too many
|
|
# source code changes, we simply translate here
|
|
if Path(output_path).exists():
|
|
return output_path
|
|
|
|
if isinstance(config, cls.CheckpointConfig):
|
|
from invokeai.backend.model_management.models.stable_diffusion import _convert_ckpt_and_cache
|
|
|
|
# Hack in VAE-fp16 fix - If model sdxl-vae-fp16-fix is installed,
|
|
# then we bake it into the converted model unless there is already
|
|
# a nonstandard VAE installed.
|
|
kwargs = {}
|
|
app_config = InvokeAIAppConfig.get_config()
|
|
vae_path = app_config.models_path / "sdxl/vae/sdxl-vae-fp16-fix"
|
|
if vae_path.exists() and not has_baked_in_sdxl_vae(Path(model_path)):
|
|
InvokeAILogger.get_logger().warning("No baked-in VAE detected. Inserting sdxl-vae-fp16-fix.")
|
|
kwargs["vae_path"] = vae_path
|
|
|
|
return _convert_ckpt_and_cache(
|
|
version=base_model,
|
|
model_config=config,
|
|
output_path=output_path,
|
|
use_safetensors=False, # corrupts sdxl models for some reason
|
|
**kwargs,
|
|
)
|
|
else:
|
|
return model_path
|