InvokeAI/invokeai/backend/model_management/models/sdxl.py

149 lines
5.3 KiB
Python

import json
import os
from enum import Enum
from pathlib import Path
from typing import Literal, Optional
from omegaconf import OmegaConf
from pydantic import Field
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.model_management.detect_baked_in_vae import has_baked_in_sdxl_vae
from invokeai.backend.util.logging import InvokeAILogger
from .base import (
BaseModelType,
DiffusersModel,
InvalidModelException,
ModelConfigBase,
ModelType,
ModelVariantType,
classproperty,
read_checkpoint_meta,
)
class StableDiffusionXLModelFormat(str, Enum):
Checkpoint = "checkpoint"
Diffusers = "diffusers"
class StableDiffusionXLModel(DiffusersModel):
# TODO: check that configs overwriten properly
class DiffusersConfig(ModelConfigBase):
model_format: Literal[StableDiffusionXLModelFormat.Diffusers]
vae: Optional[str] = Field(None)
variant: ModelVariantType
class CheckpointConfig(ModelConfigBase):
model_format: Literal[StableDiffusionXLModelFormat.Checkpoint]
vae: Optional[str] = Field(None)
config: str
variant: ModelVariantType
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert base_model in {BaseModelType.StableDiffusionXL, BaseModelType.StableDiffusionXLRefiner}
assert model_type == ModelType.Main
super().__init__(
model_path=model_path,
base_model=BaseModelType.StableDiffusionXL,
model_type=ModelType.Main,
)
@classmethod
def probe_config(cls, path: str, **kwargs):
model_format = cls.detect_format(path)
ckpt_config_path = kwargs.get("config", None)
if model_format == StableDiffusionXLModelFormat.Checkpoint:
if ckpt_config_path:
ckpt_config = OmegaConf.load(ckpt_config_path)
in_channels = ckpt_config["model"]["params"]["unet_config"]["params"]["in_channels"]
else:
checkpoint = read_checkpoint_meta(path)
checkpoint = checkpoint.get("state_dict", checkpoint)
in_channels = checkpoint["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
elif model_format == StableDiffusionXLModelFormat.Diffusers:
unet_config_path = os.path.join(path, "unet", "config.json")
if os.path.exists(unet_config_path):
with open(unet_config_path, "r") as f:
unet_config = json.loads(f.read())
in_channels = unet_config["in_channels"]
else:
raise InvalidModelException(f"{path} is not a recognized Stable Diffusion diffusers model")
else:
raise NotImplementedError(f"Unknown stable diffusion 2.* format: {model_format}")
if in_channels == 9:
variant = ModelVariantType.Inpaint
elif in_channels == 5:
variant = ModelVariantType.Depth
elif in_channels == 4:
variant = ModelVariantType.Normal
else:
raise Exception("Unkown stable diffusion 2.* model format")
if ckpt_config_path is None:
# avoid circular import
from .stable_diffusion import _select_ckpt_config
ckpt_config_path = _select_ckpt_config(kwargs.get("model_base", BaseModelType.StableDiffusionXL), variant)
return cls.create_config(
path=path,
model_format=model_format,
config=ckpt_config_path,
variant=variant,
)
@classproperty
def save_to_config(cls) -> bool:
return True
@classmethod
def detect_format(cls, model_path: str):
if os.path.isdir(model_path):
return StableDiffusionXLModelFormat.Diffusers
else:
return StableDiffusionXLModelFormat.Checkpoint
@classmethod
def convert_if_required(
cls,
model_path: str,
output_path: str,
config: ModelConfigBase,
base_model: BaseModelType,
) -> str:
# The convert script adapted from the diffusers package uses
# strings for the base model type. To avoid making too many
# source code changes, we simply translate here
if Path(output_path).exists():
return output_path
if isinstance(config, cls.CheckpointConfig):
from invokeai.backend.model_management.models.stable_diffusion import _convert_ckpt_and_cache
# Hack in VAE-fp16 fix - If model sdxl-vae-fp16-fix is installed,
# then we bake it into the converted model unless there is already
# a nonstandard VAE installed.
kwargs = {}
app_config = InvokeAIAppConfig.get_config()
vae_path = app_config.models_path / "sdxl/vae/sdxl-vae-fp16-fix"
if vae_path.exists() and not has_baked_in_sdxl_vae(Path(model_path)):
InvokeAILogger.get_logger().warning("No baked-in VAE detected. Inserting sdxl-vae-fp16-fix.")
kwargs["vae_path"] = vae_path
return _convert_ckpt_and_cache(
version=base_model,
model_config=config,
output_path=output_path,
use_safetensors=False, # corrupts sdxl models for some reason
**kwargs,
)
else:
return model_path