mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
136 lines
5.0 KiB
Python
136 lines
5.0 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
|
|
# Before running stable-diffusion on an internet-isolated machine,
|
|
# run this script from one with internet connectivity. The
|
|
# two machines must share a common .cache directory.
|
|
from transformers import CLIPTokenizer, CLIPTextModel
|
|
import clip
|
|
from transformers import BertTokenizerFast
|
|
import sys
|
|
import transformers
|
|
import os
|
|
import warnings
|
|
import torch
|
|
import urllib.request
|
|
import zipfile
|
|
import traceback
|
|
|
|
transformers.logging.set_verbosity_error()
|
|
|
|
# this will preload the Bert tokenizer fles
|
|
print('Loading bert tokenizer (ignore deprecation errors)...', end='')
|
|
with warnings.catch_warnings():
|
|
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
|
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
|
|
print('...success')
|
|
sys.stdout.flush()
|
|
|
|
# this will download requirements for Kornia
|
|
print('Loading Kornia requirements...', end='')
|
|
with warnings.catch_warnings():
|
|
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
|
import kornia
|
|
print('...success')
|
|
|
|
version = 'openai/clip-vit-large-patch14'
|
|
sys.stdout.flush()
|
|
print('Loading CLIP model...',end='')
|
|
tokenizer = CLIPTokenizer.from_pretrained(version)
|
|
transformer = CLIPTextModel.from_pretrained(version)
|
|
print('...success')
|
|
|
|
# In the event that the user has installed GFPGAN and also elected to use
|
|
# RealESRGAN, this will attempt to download the model needed by RealESRGANer
|
|
gfpgan = False
|
|
try:
|
|
from realesrgan import RealESRGANer
|
|
|
|
gfpgan = True
|
|
except ModuleNotFoundError:
|
|
pass
|
|
|
|
if gfpgan:
|
|
print('Loading models from RealESRGAN and facexlib...',end='')
|
|
try:
|
|
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
|
|
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
|
|
|
RealESRGANer(
|
|
scale=4,
|
|
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth',
|
|
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
|
)
|
|
|
|
FaceRestoreHelper(1, det_model='retinaface_resnet50')
|
|
print('...success')
|
|
except Exception:
|
|
print('Error loading ESRGAN:')
|
|
print(traceback.format_exc())
|
|
|
|
print('Loading models from GFPGAN')
|
|
import urllib.request
|
|
for model in (
|
|
[
|
|
'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth',
|
|
'src/gfpgan/experiments/pretrained_models/GFPGANv1.4.pth'
|
|
],
|
|
[
|
|
'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth',
|
|
'./gfpgan/weights/detection_Resnet50_Final.pth'
|
|
],
|
|
[
|
|
'https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth',
|
|
'./gfpgan/weights/parsing_parsenet.pth'
|
|
],
|
|
):
|
|
model_url,model_dest = model
|
|
try:
|
|
if not os.path.exists(model_dest):
|
|
print(f'Downloading gfpgan model file {model_url}...',end='')
|
|
os.makedirs(os.path.dirname(model_dest), exist_ok=True)
|
|
urllib.request.urlretrieve(model_url,model_dest)
|
|
print('...success')
|
|
except Exception:
|
|
print('Error loading GFPGAN:')
|
|
print(traceback.format_exc())
|
|
|
|
print('preloading CodeFormer model file...',end='')
|
|
try:
|
|
model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
|
|
model_dest = 'ldm/invoke/restoration/codeformer/weights/codeformer.pth'
|
|
if not os.path.exists(model_dest):
|
|
print('Downloading codeformer model file...')
|
|
os.makedirs(os.path.dirname(model_dest), exist_ok=True)
|
|
urllib.request.urlretrieve(model_url,model_dest)
|
|
except Exception:
|
|
print('Error loading CodeFormer:')
|
|
print(traceback.format_exc())
|
|
print('...success')
|
|
|
|
print('Loading clipseq model for text-based masking...',end='')
|
|
try:
|
|
model_url = 'https://owncloud.gwdg.de/index.php/s/ioHbRzFx6th32hn/download'
|
|
model_dest = 'src/clipseg/clipseg_weights.zip'
|
|
if not os.path.exists(model_dest):
|
|
os.makedirs(os.path.dirname(model_dest), exist_ok=True)
|
|
urllib.request.urlretrieve(model_url,model_dest)
|
|
with zipfile.ZipFile(model_dest,'r') as zip:
|
|
zip.extractall('src/clipseg')
|
|
os.rename('src/clipseg/clipseg_weights','src/clipseg/weights')
|
|
from models.clipseg import CLIPDensePredT
|
|
model = CLIPDensePredT(version='ViT-B/16', reduce_dim=64, )
|
|
model.eval()
|
|
model.load_state_dict(
|
|
torch.load('src/clipseg/weights/rd64-uni-refined.pth'),
|
|
model.load_state_dict(torch.load('src/clipseg/weights/rd64-uni-refined.pth'),
|
|
map_location=torch.device('cpu'),
|
|
strict=False,
|
|
)
|
|
)
|
|
except Exception:
|
|
print('Error installing clipseg model:')
|
|
print(traceback.format_exc())
|
|
print('...success')
|
|
|
|
|