InvokeAI/invokeai/app/invocations/noise.py
psychedelicious 8892df1d97 Revert "feat(nodes): use LATENT_SCALE_FACTOR const in tensor output builders"
This reverts commit ef18fc546560277302f3886e456da9a47e8edce0.
2024-02-15 17:30:03 +11:00

126 lines
3.3 KiB
Python

# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) & the InvokeAI Team
import torch
from pydantic import field_validator
from invokeai.app.invocations.fields import FieldDescriptions, InputField, LatentsField, OutputField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.misc import SEED_MAX
from ...backend.util.devices import choose_torch_device, torch_dtype
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
"""
Utilities
"""
def get_noise(
width: int,
height: int,
device: torch.device,
seed: int = 0,
latent_channels: int = 4,
downsampling_factor: int = 8,
use_cpu: bool = True,
perlin: float = 0.0,
):
"""Generate noise for a given image size."""
noise_device_type = "cpu" if use_cpu else device.type
# limit noise to only the diffusion image channels, not the mask channels
input_channels = min(latent_channels, 4)
generator = torch.Generator(device=noise_device_type).manual_seed(seed)
noise_tensor = torch.randn(
[
1,
input_channels,
height // downsampling_factor,
width // downsampling_factor,
],
dtype=torch_dtype(device),
device=noise_device_type,
generator=generator,
).to("cpu")
return noise_tensor
"""
Nodes
"""
@invocation_output("noise_output")
class NoiseOutput(BaseInvocationOutput):
"""Invocation noise output"""
noise: LatentsField = OutputField(description=FieldDescriptions.noise)
width: int = OutputField(description=FieldDescriptions.width)
height: int = OutputField(description=FieldDescriptions.height)
@classmethod
def build(cls, latents_name: str, latents: torch.Tensor, seed: int) -> "NoiseOutput":
return cls(
noise=LatentsField(latents_name=latents_name, seed=seed),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
@invocation(
"noise",
title="Noise",
tags=["latents", "noise"],
category="latents",
version="1.0.1",
)
class NoiseInvocation(BaseInvocation):
"""Generates latent noise."""
seed: int = InputField(
default=0,
ge=0,
le=SEED_MAX,
description=FieldDescriptions.seed,
)
width: int = InputField(
default=512,
multiple_of=8,
gt=0,
description=FieldDescriptions.width,
)
height: int = InputField(
default=512,
multiple_of=8,
gt=0,
description=FieldDescriptions.height,
)
use_cpu: bool = InputField(
default=True,
description="Use CPU for noise generation (for reproducible results across platforms)",
)
@field_validator("seed", mode="before")
def modulo_seed(cls, v):
"""Returns the seed modulo (SEED_MAX + 1) to ensure it is within the valid range."""
return v % (SEED_MAX + 1)
def invoke(self, context: InvocationContext) -> NoiseOutput:
noise = get_noise(
width=self.width,
height=self.height,
device=choose_torch_device(),
seed=self.seed,
use_cpu=self.use_cpu,
)
name = context.tensors.save(tensor=noise)
return NoiseOutput.build(latents_name=name, latents=noise, seed=self.seed)