mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
1507 lines
59 KiB
Python
1507 lines
59 KiB
Python
"""enum
|
|
Manage a cache of Stable Diffusion model files for fast switching.
|
|
They are moved between GPU and CPU as necessary. If CPU memory falls
|
|
below a preset minimum, the least recently used model will be
|
|
cleared and loaded from disk when next needed.
|
|
"""
|
|
from __future__ import annotations
|
|
|
|
import contextlib
|
|
import gc
|
|
import hashlib
|
|
import os
|
|
import re
|
|
import shutil
|
|
import sys
|
|
import textwrap
|
|
import time
|
|
import traceback
|
|
import warnings
|
|
from enum import Enum, auto
|
|
from pathlib import Path
|
|
from shutil import move, rmtree
|
|
from typing import Any, Optional, Union, Callable, Dict, List, types
|
|
|
|
import safetensors
|
|
import safetensors.torch
|
|
import torch
|
|
import transformers
|
|
import invokeai.backend.util.logging as logger
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
UNet2DConditionModel,
|
|
SchedulerMixin,
|
|
logging as dlogging,
|
|
)
|
|
from huggingface_hub import scan_cache_dir
|
|
from omegaconf import OmegaConf
|
|
from omegaconf.dictconfig import DictConfig
|
|
from picklescan.scanner import scan_file_path
|
|
|
|
from transformers import (
|
|
CLIPTextModel,
|
|
CLIPTokenizer,
|
|
CLIPFeatureExtractor,
|
|
)
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
|
StableDiffusionSafetyChecker,
|
|
)
|
|
from ..stable_diffusion import (
|
|
StableDiffusionGeneratorPipeline,
|
|
)
|
|
from invokeai.app.services.config import get_invokeai_config
|
|
from ..install.model_install_backend import (
|
|
Dataset_path,
|
|
hf_download_with_resume,
|
|
)
|
|
from ..util import CUDA_DEVICE, ask_user, download_with_resume
|
|
|
|
class SDLegacyType(Enum):
|
|
V1 = auto()
|
|
V1_INPAINT = auto()
|
|
V2 = auto()
|
|
V2_e = auto()
|
|
V2_v = auto()
|
|
UNKNOWN = auto()
|
|
|
|
class SDModelComponent(Enum):
|
|
vae="vae"
|
|
text_encoder="text_encoder"
|
|
tokenizer="tokenizer"
|
|
unet="unet"
|
|
scheduler="scheduler"
|
|
safety_checker="safety_checker"
|
|
feature_extractor="feature_extractor"
|
|
|
|
DEFAULT_MAX_MODELS = 2
|
|
|
|
class ModelManager(object):
|
|
"""
|
|
Model manager handles loading, caching, importing, deleting, converting, and editing models.
|
|
"""
|
|
|
|
logger: types.ModuleType = logger
|
|
|
|
def __init__(
|
|
self,
|
|
config: OmegaConf | Path,
|
|
device_type: torch.device = CUDA_DEVICE,
|
|
precision: str = "float16",
|
|
max_loaded_models=DEFAULT_MAX_MODELS,
|
|
sequential_offload=False,
|
|
embedding_path: Path = None,
|
|
logger: types.ModuleType = logger,
|
|
):
|
|
"""
|
|
Initialize with the path to the models.yaml config file or
|
|
an initialized OmegaConf dictionary. Optional parameters
|
|
are the torch device type, precision, max_loaded_models,
|
|
and sequential_offload boolean. Note that the default device
|
|
type and precision are set up for a CUDA system running at half precision.
|
|
"""
|
|
# prevent nasty-looking CLIP log message
|
|
transformers.logging.set_verbosity_error()
|
|
if not isinstance(config, DictConfig):
|
|
config = OmegaConf.load(config)
|
|
self.config = config
|
|
self.globals = get_invokeai_config()
|
|
self.precision = precision
|
|
self.device = torch.device(device_type)
|
|
self.max_loaded_models = max_loaded_models
|
|
self.models = {}
|
|
self.stack = [] # this is an LRU FIFO
|
|
self.current_model = None
|
|
self.sequential_offload = sequential_offload
|
|
self.embedding_path = embedding_path
|
|
self.logger = logger
|
|
|
|
def valid_model(self, model_name: str) -> bool:
|
|
"""
|
|
Given a model name, returns True if it is a valid
|
|
identifier.
|
|
"""
|
|
return model_name in self.config
|
|
|
|
def get_model(self, model_name: str = None) -> dict:
|
|
"""Given a model named identified in models.yaml, return a dict
|
|
containing the model object and some of its key features. If
|
|
in RAM will load into GPU VRAM. If on disk, will load from
|
|
there.
|
|
The dict has the following keys:
|
|
'model': The StableDiffusionGeneratorPipeline object
|
|
'model_name': The name of the model in models.yaml
|
|
'width': The width of images trained by this model
|
|
'height': The height of images trained by this model
|
|
'hash': A unique hash of this model's files on disk.
|
|
"""
|
|
if not model_name:
|
|
return (
|
|
self.get_model(self.current_model)
|
|
if self.current_model
|
|
else self.get_model(self.default_model())
|
|
)
|
|
|
|
if not self.valid_model(model_name):
|
|
self.logger.error(
|
|
f'"{model_name}" is not a known model name. Please check your models.yaml file'
|
|
)
|
|
return self.current_model
|
|
|
|
if self.current_model != model_name:
|
|
if model_name not in self.models: # make room for a new one
|
|
self._make_cache_room()
|
|
self.offload_model(self.current_model)
|
|
|
|
if model_name in self.models:
|
|
requested_model = self.models[model_name]["model"]
|
|
self.logger.info(f"Retrieving model {model_name} from system RAM cache")
|
|
requested_model.ready()
|
|
width = self.models[model_name]["width"]
|
|
height = self.models[model_name]["height"]
|
|
hash = self.models[model_name]["hash"]
|
|
|
|
else: # we're about to load a new model, so potentially offload the least recently used one
|
|
requested_model, width, height, hash = self._load_model(model_name)
|
|
self.models[model_name] = {
|
|
"model_name": model_name,
|
|
"model": requested_model,
|
|
"width": width,
|
|
"height": height,
|
|
"hash": hash,
|
|
}
|
|
|
|
self.current_model = model_name
|
|
self._push_newest_model(model_name)
|
|
return {
|
|
"model_name": model_name,
|
|
"model": requested_model,
|
|
"width": width,
|
|
"height": height,
|
|
"hash": hash,
|
|
}
|
|
|
|
def get_model_vae(self, model_name: str=None)->AutoencoderKL:
|
|
"""Given a model name identified in models.yaml, load the model into
|
|
GPU if necessary and return its assigned VAE as an
|
|
AutoencoderKL object. If no model name is provided, return the
|
|
vae from the model currently in the GPU.
|
|
"""
|
|
return self._get_sub_model(model_name, SDModelComponent.vae)
|
|
|
|
def get_model_tokenizer(self, model_name: str=None)->CLIPTokenizer:
|
|
"""Given a model name identified in models.yaml, load the model into
|
|
GPU if necessary and return its assigned CLIPTokenizer. If no
|
|
model name is provided, return the tokenizer from the model
|
|
currently in the GPU.
|
|
"""
|
|
return self._get_sub_model(model_name, SDModelComponent.tokenizer)
|
|
|
|
def get_model_unet(self, model_name: str=None)->UNet2DConditionModel:
|
|
"""Given a model name identified in models.yaml, load the model into
|
|
GPU if necessary and return its assigned UNet2DConditionModel. If no model
|
|
name is provided, return the UNet from the model
|
|
currently in the GPU.
|
|
"""
|
|
return self._get_sub_model(model_name, SDModelComponent.unet)
|
|
|
|
def get_model_text_encoder(self, model_name: str=None)->CLIPTextModel:
|
|
"""Given a model name identified in models.yaml, load the model into
|
|
GPU if necessary and return its assigned CLIPTextModel. If no
|
|
model name is provided, return the text encoder from the model
|
|
currently in the GPU.
|
|
"""
|
|
return self._get_sub_model(model_name, SDModelComponent.text_encoder)
|
|
|
|
def get_model_feature_extractor(self, model_name: str=None)->CLIPFeatureExtractor:
|
|
"""Given a model name identified in models.yaml, load the model into
|
|
GPU if necessary and return its assigned CLIPFeatureExtractor. If no
|
|
model name is provided, return the text encoder from the model
|
|
currently in the GPU.
|
|
"""
|
|
return self._get_sub_model(model_name, SDModelComponent.feature_extractor)
|
|
|
|
def get_model_scheduler(self, model_name: str=None)->SchedulerMixin:
|
|
"""Given a model name identified in models.yaml, load the model into
|
|
GPU if necessary and return its assigned scheduler. If no
|
|
model name is provided, return the text encoder from the model
|
|
currently in the GPU.
|
|
"""
|
|
return self._get_sub_model(model_name, SDModelComponent.scheduler)
|
|
|
|
def _get_sub_model(
|
|
self,
|
|
model_name: str=None,
|
|
model_part: SDModelComponent=SDModelComponent.vae,
|
|
) -> Union[
|
|
AutoencoderKL,
|
|
CLIPTokenizer,
|
|
CLIPFeatureExtractor,
|
|
UNet2DConditionModel,
|
|
CLIPTextModel,
|
|
StableDiffusionSafetyChecker,
|
|
]:
|
|
"""Given a model name identified in models.yaml, and the part of the
|
|
model you wish to retrieve, return that part. Parts are in an Enum
|
|
class named SDModelComponent, and consist of:
|
|
SDModelComponent.vae
|
|
SDModelComponent.text_encoder
|
|
SDModelComponent.tokenizer
|
|
SDModelComponent.unet
|
|
SDModelComponent.scheduler
|
|
SDModelComponent.safety_checker
|
|
SDModelComponent.feature_extractor
|
|
"""
|
|
model_dict = self.get_model(model_name)
|
|
model = model_dict["model"]
|
|
return getattr(model, model_part.value)
|
|
|
|
def default_model(self) -> str | None:
|
|
"""
|
|
Returns the name of the default model, or None
|
|
if none is defined.
|
|
"""
|
|
for model_name in self.config:
|
|
if self.config[model_name].get("default"):
|
|
return model_name
|
|
return list(self.config.keys())[0] # first one
|
|
|
|
def set_default_model(self, model_name: str) -> None:
|
|
"""
|
|
Set the default model. The change will not take
|
|
effect until you call model_manager.commit()
|
|
"""
|
|
assert model_name in self.model_names(), f"unknown model '{model_name}'"
|
|
|
|
config = self.config
|
|
for model in config:
|
|
config[model].pop("default", None)
|
|
config[model_name]["default"] = True
|
|
|
|
def model_info(self, model_name: str) -> dict:
|
|
"""
|
|
Given a model name returns the OmegaConf (dict-like) object describing it.
|
|
"""
|
|
if model_name not in self.config:
|
|
return None
|
|
return self.config[model_name]
|
|
|
|
def model_names(self) -> list[str]:
|
|
"""
|
|
Return a list consisting of all the names of models defined in models.yaml
|
|
"""
|
|
return list(self.config.keys())
|
|
|
|
def is_legacy(self, model_name: str) -> bool:
|
|
"""
|
|
Return true if this is a legacy (.ckpt) model
|
|
"""
|
|
# if we are converting legacy files automatically, then
|
|
# there are no legacy ckpts!
|
|
if self.globals.ckpt_convert:
|
|
return False
|
|
info = self.model_info(model_name)
|
|
if "weights" in info and info["weights"].endswith((".ckpt", ".safetensors")):
|
|
return True
|
|
return False
|
|
|
|
def list_models(self) -> dict:
|
|
"""
|
|
Return a dict of models in the format:
|
|
{ model_name1: {'status': ('active'|'cached'|'not loaded'),
|
|
'description': description,
|
|
'format': ('ckpt'|'diffusers'|'vae'),
|
|
},
|
|
model_name2: { etc }
|
|
Please use model_manager.models() to get all the model names,
|
|
model_manager.model_info('model-name') to get the stanza for the model
|
|
named 'model-name', and model_manager.config to get the full OmegaConf
|
|
object derived from models.yaml
|
|
"""
|
|
models = {}
|
|
for name in sorted(self.config, key=str.casefold):
|
|
stanza = self.config[name]
|
|
|
|
# don't include VAEs in listing (legacy style)
|
|
if "config" in stanza and "/VAE/" in stanza["config"]:
|
|
continue
|
|
|
|
models[name] = dict()
|
|
format = stanza.get("format", "ckpt") # Determine Format
|
|
|
|
# Common Attribs
|
|
description = stanza.get("description", None)
|
|
if self.current_model == name:
|
|
status = "active"
|
|
elif name in self.models:
|
|
status = "cached"
|
|
else:
|
|
status = "not loaded"
|
|
models[name].update(
|
|
description=description,
|
|
format=format,
|
|
status=status,
|
|
)
|
|
|
|
# Checkpoint Config Parse
|
|
if format == "ckpt":
|
|
models[name].update(
|
|
config=str(stanza.get("config", None)),
|
|
weights=str(stanza.get("weights", None)),
|
|
vae=str(stanza.get("vae", None)),
|
|
width=str(stanza.get("width", 512)),
|
|
height=str(stanza.get("height", 512)),
|
|
)
|
|
|
|
# Diffusers Config Parse
|
|
if vae := stanza.get("vae", None):
|
|
if isinstance(vae, DictConfig):
|
|
vae = dict(
|
|
repo_id=str(vae.get("repo_id", None)),
|
|
path=str(vae.get("path", None)),
|
|
subfolder=str(vae.get("subfolder", None)),
|
|
)
|
|
|
|
if format == "diffusers":
|
|
models[name].update(
|
|
vae=vae,
|
|
repo_id=str(stanza.get("repo_id", None)),
|
|
path=str(stanza.get("path", None)),
|
|
)
|
|
|
|
return models
|
|
|
|
def print_models(self) -> None:
|
|
"""
|
|
Print a table of models, their descriptions, and load status
|
|
"""
|
|
models = self.list_models()
|
|
for name in models:
|
|
if models[name]["format"] == "vae":
|
|
continue
|
|
line = f'{name:25s} {models[name]["status"]:>10s} {models[name]["format"]:10s} {models[name]["description"]}'
|
|
if models[name]["status"] == "active":
|
|
line = f"\033[1m{line}\033[0m"
|
|
print(line)
|
|
|
|
def del_model(self, model_name: str, delete_files: bool = False) -> None:
|
|
"""
|
|
Delete the named model.
|
|
"""
|
|
omega = self.config
|
|
if model_name not in omega:
|
|
self.logger.error(f"Unknown model {model_name}")
|
|
return
|
|
# save these for use in deletion later
|
|
conf = omega[model_name]
|
|
repo_id = conf.get("repo_id", None)
|
|
path = self._abs_path(conf.get("path", None))
|
|
weights = self._abs_path(conf.get("weights", None))
|
|
|
|
del omega[model_name]
|
|
if model_name in self.stack:
|
|
self.stack.remove(model_name)
|
|
if delete_files:
|
|
if weights:
|
|
self.logger.info(f"Deleting file {weights}")
|
|
Path(weights).unlink(missing_ok=True)
|
|
elif path:
|
|
self.logger.info(f"Deleting directory {path}")
|
|
rmtree(path, ignore_errors=True)
|
|
elif repo_id:
|
|
self.logger.info(f"Deleting the cached model directory for {repo_id}")
|
|
self._delete_model_from_cache(repo_id)
|
|
|
|
def add_model(
|
|
self, model_name: str, model_attributes: dict, clobber: bool = False
|
|
) -> None:
|
|
"""
|
|
Update the named model with a dictionary of attributes. Will fail with an
|
|
assertion error if the name already exists. Pass clobber=True to overwrite.
|
|
On a successful update, the config will be changed in memory and the
|
|
method will return True. Will fail with an assertion error if provided
|
|
attributes are incorrect or the model name is missing.
|
|
"""
|
|
omega = self.config
|
|
assert "format" in model_attributes, 'missing required field "format"'
|
|
if model_attributes["format"] == "diffusers":
|
|
assert (
|
|
"description" in model_attributes
|
|
), 'required field "description" is missing'
|
|
assert (
|
|
"path" in model_attributes or "repo_id" in model_attributes
|
|
), 'model must have either the "path" or "repo_id" fields defined'
|
|
else:
|
|
for field in ("description", "weights", "height", "width", "config"):
|
|
assert field in model_attributes, f"required field {field} is missing"
|
|
|
|
assert (
|
|
clobber or model_name not in omega
|
|
), f'attempt to overwrite existing model definition "{model_name}"'
|
|
|
|
omega[model_name] = model_attributes
|
|
|
|
if "weights" in omega[model_name]:
|
|
omega[model_name]["weights"].replace("\\", "/")
|
|
|
|
if clobber:
|
|
self._invalidate_cached_model(model_name)
|
|
|
|
def _load_model(self, model_name: str):
|
|
"""Load and initialize the model from configuration variables passed at object creation time"""
|
|
if model_name not in self.config:
|
|
self.logger.error(
|
|
f'"{model_name}" is not a known model name. Please check your models.yaml file'
|
|
)
|
|
return
|
|
|
|
mconfig = self.config[model_name]
|
|
|
|
# for usage statistics
|
|
if self._has_cuda():
|
|
torch.cuda.reset_peak_memory_stats()
|
|
torch.cuda.empty_cache()
|
|
|
|
tic = time.time()
|
|
|
|
# this does the work
|
|
model_format = mconfig.get("format", "ckpt")
|
|
if model_format == "ckpt":
|
|
weights = mconfig.weights
|
|
self.logger.info(f"Loading {model_name} from {weights}")
|
|
model, width, height, model_hash = self._load_ckpt_model(
|
|
model_name, mconfig
|
|
)
|
|
elif model_format == "diffusers":
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
model, width, height, model_hash = self._load_diffusers_model(mconfig)
|
|
else:
|
|
raise NotImplementedError(
|
|
f"Unknown model format {model_name}: {model_format}"
|
|
)
|
|
self._add_embeddings_to_model(model)
|
|
|
|
# usage statistics
|
|
toc = time.time()
|
|
self.logger.info("Model loaded in " + "%4.2fs" % (toc - tic))
|
|
if self._has_cuda():
|
|
self.logger.info(
|
|
"Max VRAM used to load the model: "+
|
|
"%4.2fG" % (torch.cuda.max_memory_allocated() / 1e9)
|
|
)
|
|
self.logger.info(
|
|
"Current VRAM usage: "+
|
|
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9)
|
|
)
|
|
return model, width, height, model_hash
|
|
|
|
def _load_diffusers_model(self, mconfig):
|
|
name_or_path = self.model_name_or_path(mconfig)
|
|
using_fp16 = self.precision == "float16"
|
|
|
|
self.logger.info(f"Loading diffusers model from {name_or_path}")
|
|
if using_fp16:
|
|
self.logger.debug("Using faster float16 precision")
|
|
else:
|
|
self.logger.debug("Using more accurate float32 precision")
|
|
|
|
# TODO: scan weights maybe?
|
|
pipeline_args: dict[str, Any] = dict(
|
|
safety_checker=None, local_files_only=not self.globals.internet_available
|
|
)
|
|
if "vae" in mconfig and mconfig["vae"] is not None:
|
|
if vae := self._load_vae(mconfig["vae"]):
|
|
pipeline_args.update(vae=vae)
|
|
if not isinstance(name_or_path, Path):
|
|
pipeline_args.update(cache_dir=self.globals.cache_dir)
|
|
if using_fp16:
|
|
pipeline_args.update(torch_dtype=torch.float16)
|
|
fp_args_list = [{"revision": "fp16"}, {}]
|
|
else:
|
|
fp_args_list = [{}]
|
|
|
|
verbosity = dlogging.get_verbosity()
|
|
dlogging.set_verbosity_error()
|
|
|
|
pipeline = None
|
|
for fp_args in fp_args_list:
|
|
try:
|
|
pipeline = StableDiffusionGeneratorPipeline.from_pretrained(
|
|
name_or_path,
|
|
**pipeline_args,
|
|
**fp_args,
|
|
)
|
|
except OSError as e:
|
|
if str(e).startswith("fp16 is not a valid"):
|
|
pass
|
|
else:
|
|
self.logger.error(
|
|
f"An unexpected error occurred while downloading the model: {e})"
|
|
)
|
|
if pipeline:
|
|
break
|
|
|
|
dlogging.set_verbosity(verbosity)
|
|
assert pipeline is not None, OSError(f'"{name_or_path}" could not be loaded')
|
|
|
|
if self.sequential_offload:
|
|
pipeline.enable_offload_submodels(self.device)
|
|
else:
|
|
pipeline.to(self.device)
|
|
|
|
model_hash = self._diffuser_sha256(name_or_path)
|
|
|
|
# square images???
|
|
width = pipeline.unet.config.sample_size * pipeline.vae_scale_factor
|
|
height = width
|
|
self.logger.debug(f"Default image dimensions = {width} x {height}")
|
|
|
|
return pipeline, width, height, model_hash
|
|
|
|
def _load_ckpt_model(self, model_name, mconfig):
|
|
config = mconfig.config
|
|
weights = mconfig.weights
|
|
vae = mconfig.get("vae")
|
|
width = mconfig.width
|
|
height = mconfig.height
|
|
|
|
root_dir = self.globals.root_dir
|
|
config = str(root_dir / config)
|
|
weights = str(root_dir / weights)
|
|
|
|
# Convert to diffusers and return a diffusers pipeline
|
|
self.logger.info(f"Converting legacy checkpoint {model_name} into a diffusers model...")
|
|
|
|
from . import load_pipeline_from_original_stable_diffusion_ckpt
|
|
|
|
try:
|
|
if self.list_models()[self.current_model]["status"] == "active":
|
|
self.offload_model(self.current_model)
|
|
except Exception:
|
|
pass
|
|
|
|
vae_path = None
|
|
if vae:
|
|
vae_path = str(root_dir / vae)
|
|
if self._has_cuda():
|
|
torch.cuda.empty_cache()
|
|
pipeline = load_pipeline_from_original_stable_diffusion_ckpt(
|
|
checkpoint_path=weights,
|
|
original_config_file=config,
|
|
vae_path=vae_path,
|
|
return_generator_pipeline=True,
|
|
precision=torch.float16 if self.precision == "float16" else torch.float32,
|
|
)
|
|
if self.sequential_offload:
|
|
pipeline.enable_offload_submodels(self.device)
|
|
else:
|
|
pipeline.to(self.device)
|
|
return (
|
|
pipeline,
|
|
width,
|
|
height,
|
|
"NOHASH",
|
|
)
|
|
|
|
def model_name_or_path(self, model_name: Union[str, DictConfig]) -> str | Path:
|
|
if isinstance(model_name, DictConfig) or isinstance(model_name, dict):
|
|
mconfig = model_name
|
|
elif model_name in self.config:
|
|
mconfig = self.config[model_name]
|
|
else:
|
|
raise ValueError(
|
|
f'"{model_name}" is not a known model name. Please check your models.yaml file'
|
|
)
|
|
|
|
if "path" in mconfig and mconfig["path"] is not None:
|
|
path = self.globals.root_dir / Path(mconfig["path"])
|
|
return path
|
|
elif "repo_id" in mconfig:
|
|
return mconfig["repo_id"]
|
|
else:
|
|
raise ValueError("Model config must specify either repo_id or path.")
|
|
|
|
def offload_model(self, model_name: str) -> None:
|
|
"""
|
|
Offload the indicated model to CPU. Will call
|
|
_make_cache_room() to free space if needed.
|
|
"""
|
|
if model_name not in self.models:
|
|
return
|
|
|
|
self.logger.info(f"Offloading {model_name} to CPU")
|
|
model = self.models[model_name]["model"]
|
|
model.offload_all()
|
|
self.current_model = None
|
|
|
|
gc.collect()
|
|
if self._has_cuda():
|
|
torch.cuda.empty_cache()
|
|
|
|
@classmethod
|
|
def scan_model(self, model_name, checkpoint):
|
|
"""
|
|
Apply picklescanner to the indicated checkpoint and issue a warning
|
|
and option to exit if an infected file is identified.
|
|
"""
|
|
# scan model
|
|
self.logger.debug(f"Scanning Model: {model_name}")
|
|
scan_result = scan_file_path(checkpoint)
|
|
if scan_result.infected_files != 0:
|
|
if scan_result.infected_files == 1:
|
|
self.logger.critical(f"Issues Found In Model: {scan_result.issues_count}")
|
|
self.logger.critical("The model you are trying to load seems to be infected.")
|
|
self.logger.critical("For your safety, InvokeAI will not load this model.")
|
|
self.logger.critical("Please use checkpoints from trusted sources.")
|
|
self.logger.critical("Exiting InvokeAI")
|
|
sys.exit()
|
|
else:
|
|
self.logger.warning("InvokeAI was unable to scan the model you are using.")
|
|
model_safe_check_fail = ask_user(
|
|
"Do you want to to continue loading the model?", ["y", "n"]
|
|
)
|
|
if model_safe_check_fail.lower() != "y":
|
|
self.logger.critical("Exiting InvokeAI")
|
|
sys.exit()
|
|
else:
|
|
self.logger.debug("Model scanned ok")
|
|
|
|
def import_diffuser_model(
|
|
self,
|
|
repo_or_path: Union[str, Path],
|
|
model_name: str = None,
|
|
description: str = None,
|
|
vae: dict = None,
|
|
commit_to_conf: Path = None,
|
|
) -> bool:
|
|
"""
|
|
Attempts to install the indicated diffuser model and returns True if successful.
|
|
|
|
"repo_or_path" can be either a repo-id or a path-like object corresponding to the
|
|
top of a downloaded diffusers directory.
|
|
|
|
You can optionally provide a model name and/or description. If not provided,
|
|
then these will be derived from the repo name. If you provide a commit_to_conf
|
|
path to the configuration file, then the new entry will be committed to the
|
|
models.yaml file.
|
|
"""
|
|
model_name = model_name or Path(repo_or_path).stem
|
|
model_description = description or f"Imported diffusers model {model_name}"
|
|
new_config = dict(
|
|
description=model_description,
|
|
vae=vae,
|
|
format="diffusers",
|
|
)
|
|
if isinstance(repo_or_path, Path) and repo_or_path.exists():
|
|
new_config.update(path=str(repo_or_path))
|
|
else:
|
|
new_config.update(repo_id=repo_or_path)
|
|
|
|
self.add_model(model_name, new_config, True)
|
|
if commit_to_conf:
|
|
self.commit(commit_to_conf)
|
|
return model_name
|
|
|
|
@classmethod
|
|
def probe_model_type(self, checkpoint: dict) -> SDLegacyType:
|
|
"""
|
|
Given a pickle or safetensors model object, probes contents
|
|
of the object and returns an SDLegacyType indicating its
|
|
format. Valid return values include:
|
|
SDLegacyType.V1
|
|
SDLegacyType.V1_INPAINT
|
|
SDLegacyType.V2 (V2 prediction type unknown)
|
|
SDLegacyType.V2_e (V2 using 'epsilon' prediction type)
|
|
SDLegacyType.V2_v (V2 using 'v_prediction' prediction type)
|
|
SDLegacyType.UNKNOWN
|
|
"""
|
|
global_step = checkpoint.get("global_step")
|
|
state_dict = checkpoint.get("state_dict") or checkpoint
|
|
|
|
try:
|
|
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
|
|
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
|
|
if global_step == 220000:
|
|
return SDLegacyType.V2_e
|
|
elif global_step == 110000:
|
|
return SDLegacyType.V2_v
|
|
else:
|
|
return SDLegacyType.V2
|
|
# otherwise we assume a V1 file
|
|
in_channels = state_dict[
|
|
"model.diffusion_model.input_blocks.0.0.weight"
|
|
].shape[1]
|
|
if in_channels == 9:
|
|
return SDLegacyType.V1_INPAINT
|
|
elif in_channels == 4:
|
|
return SDLegacyType.V1
|
|
else:
|
|
return SDLegacyType.UNKNOWN
|
|
except KeyError:
|
|
return SDLegacyType.UNKNOWN
|
|
|
|
def heuristic_import(
|
|
self,
|
|
path_url_or_repo: str,
|
|
model_name: str = None,
|
|
description: str = None,
|
|
model_config_file: Path = None,
|
|
commit_to_conf: Path = None,
|
|
config_file_callback: Callable[[Path], Path] = None,
|
|
) -> str:
|
|
"""Accept a string which could be:
|
|
- a HF diffusers repo_id
|
|
- a URL pointing to a legacy .ckpt or .safetensors file
|
|
- a local path pointing to a legacy .ckpt or .safetensors file
|
|
- a local directory containing .ckpt and .safetensors files
|
|
- a local directory containing a diffusers model
|
|
|
|
After determining the nature of the model and downloading it
|
|
(if necessary), the file is probed to determine the correct
|
|
configuration file (if needed) and it is imported.
|
|
|
|
The model_name and/or description can be provided. If not, they will
|
|
be generated automatically.
|
|
|
|
If commit_to_conf is provided, the newly loaded model will be written
|
|
to the `models.yaml` file at the indicated path. Otherwise, the changes
|
|
will only remain in memory.
|
|
|
|
The routine will do its best to figure out the config file
|
|
needed to convert legacy checkpoint file, but if it can't it
|
|
will call the config_file_callback routine, if provided. The
|
|
callback accepts a single argument, the Path to the checkpoint
|
|
file, and returns a Path to the config file to use.
|
|
|
|
The (potentially derived) name of the model is returned on
|
|
success, or None on failure. When multiple models are added
|
|
from a directory, only the last imported one is returned.
|
|
|
|
"""
|
|
model_path: Path = None
|
|
thing = str(path_url_or_repo) # to save typing
|
|
|
|
self.logger.info(f"Probing {thing} for import")
|
|
|
|
if thing.startswith(("http:", "https:", "ftp:")):
|
|
self.logger.info(f"{thing} appears to be a URL")
|
|
model_path = self._resolve_path(
|
|
thing, "models/ldm/stable-diffusion-v1"
|
|
) # _resolve_path does a download if needed
|
|
|
|
elif Path(thing).is_file() and thing.endswith((".ckpt", ".safetensors")):
|
|
if Path(thing).stem in ["model", "diffusion_pytorch_model"]:
|
|
self.logger.debug(f"{Path(thing).name} appears to be part of a diffusers model. Skipping import")
|
|
return
|
|
else:
|
|
self.logger.debug(f"{thing} appears to be a checkpoint file on disk")
|
|
model_path = self._resolve_path(thing, "models/ldm/stable-diffusion-v1")
|
|
|
|
elif Path(thing).is_dir() and Path(thing, "model_index.json").exists():
|
|
self.logger.debug(f"{thing} appears to be a diffusers file on disk")
|
|
model_name = self.import_diffuser_model(
|
|
thing,
|
|
vae=dict(repo_id="stabilityai/sd-vae-ft-mse"),
|
|
model_name=model_name,
|
|
description=description,
|
|
commit_to_conf=commit_to_conf,
|
|
)
|
|
|
|
elif Path(thing).is_dir():
|
|
if (Path(thing) / "model_index.json").exists():
|
|
self.logger.debug(f"{thing} appears to be a diffusers model.")
|
|
model_name = self.import_diffuser_model(
|
|
thing, commit_to_conf=commit_to_conf
|
|
)
|
|
else:
|
|
self.logger.debug(f"{thing} appears to be a directory. Will scan for models to import")
|
|
for m in list(Path(thing).rglob("*.ckpt")) + list(
|
|
Path(thing).rglob("*.safetensors")
|
|
):
|
|
if model_name := self.heuristic_import(
|
|
str(m), commit_to_conf=commit_to_conf
|
|
):
|
|
self.logger.info(f"{model_name} successfully imported")
|
|
return model_name
|
|
|
|
elif re.match(r"^[\w.+-]+/[\w.+-]+$", thing):
|
|
self.logger.debug(f"{thing} appears to be a HuggingFace diffusers repo_id")
|
|
model_name = self.import_diffuser_model(
|
|
thing, commit_to_conf=commit_to_conf
|
|
)
|
|
pipeline, _, _, _ = self._load_diffusers_model(self.config[model_name])
|
|
return model_name
|
|
else:
|
|
self.logger.warning(f"{thing}: Unknown thing. Please provide a URL, file path, directory or HuggingFace repo_id")
|
|
|
|
# Model_path is set in the event of a legacy checkpoint file.
|
|
# If not set, we're all done
|
|
if not model_path:
|
|
return
|
|
|
|
if model_path.stem in self.config: # already imported
|
|
self.logger.debug("Already imported. Skipping")
|
|
return model_path.stem
|
|
|
|
# another round of heuristics to guess the correct config file.
|
|
checkpoint = None
|
|
if model_path.suffix in [".ckpt", ".pt"]:
|
|
self.scan_model(model_path, model_path)
|
|
checkpoint = torch.load(model_path)
|
|
else:
|
|
checkpoint = safetensors.torch.load_file(model_path)
|
|
|
|
# additional probing needed if no config file provided
|
|
if model_config_file is None:
|
|
# look for a like-named .yaml file in same directory
|
|
if model_path.with_suffix(".yaml").exists():
|
|
model_config_file = model_path.with_suffix(".yaml")
|
|
self.logger.debug(f"Using config file {model_config_file.name}")
|
|
|
|
else:
|
|
model_type = self.probe_model_type(checkpoint)
|
|
if model_type == SDLegacyType.V1:
|
|
self.logger.debug("SD-v1 model detected")
|
|
model_config_file = self.globals.legacy_conf_path / "v1-inference.yaml"
|
|
elif model_type == SDLegacyType.V1_INPAINT:
|
|
self.logger.debug("SD-v1 inpainting model detected")
|
|
model_config_file = self.globals.legacy_conf_path / "v1-inpainting-inference.yaml"
|
|
elif model_type == SDLegacyType.V2_v:
|
|
self.logger.debug("SD-v2-v model detected")
|
|
model_config_file = self.globals.legacy_conf_path / "v2-inference-v.yaml"
|
|
elif model_type == SDLegacyType.V2_e:
|
|
self.logger.debug("SD-v2-e model detected")
|
|
model_config_file = self.globals.legacy_conf_path / "v2-inference.yaml"
|
|
elif model_type == SDLegacyType.V2:
|
|
self.logger.warning(
|
|
f"{thing} is a V2 checkpoint file, but its parameterization cannot be determined."
|
|
)
|
|
else:
|
|
self.logger.warning(
|
|
f"{thing} is a legacy checkpoint file but not a known Stable Diffusion model."
|
|
)
|
|
|
|
if not model_config_file and config_file_callback:
|
|
model_config_file = config_file_callback(model_path)
|
|
|
|
# despite our best efforts, we could not find a model config file, so give up
|
|
if not model_config_file:
|
|
return
|
|
|
|
# look for a custom vae, a like-named file ending with .vae in the same directory
|
|
vae_path = None
|
|
for suffix in ["pt", "ckpt", "safetensors"]:
|
|
if (model_path.with_suffix(f".vae.{suffix}")).exists():
|
|
vae_path = model_path.with_suffix(f".vae.{suffix}")
|
|
self.logger.debug(f"Using VAE file {vae_path.name}")
|
|
vae = None if vae_path else dict(repo_id="stabilityai/sd-vae-ft-mse")
|
|
|
|
diffuser_path = self.globals.root_dir / "models/converted_ckpts" / model_path.stem
|
|
model_name = self.convert_and_import(
|
|
model_path,
|
|
diffusers_path=diffuser_path,
|
|
vae=vae,
|
|
vae_path=str(vae_path),
|
|
model_name=model_name,
|
|
model_description=description,
|
|
original_config_file=model_config_file,
|
|
commit_to_conf=commit_to_conf,
|
|
scan_needed=False,
|
|
)
|
|
return model_name
|
|
|
|
def convert_and_import(
|
|
self,
|
|
ckpt_path: Path,
|
|
diffusers_path: Path,
|
|
model_name=None,
|
|
model_description=None,
|
|
vae: dict = None,
|
|
vae_path: Path = None,
|
|
original_config_file: Path = None,
|
|
commit_to_conf: Path = None,
|
|
scan_needed: bool = True,
|
|
) -> str:
|
|
"""
|
|
Convert a legacy ckpt weights file to diffuser model and import
|
|
into models.yaml.
|
|
"""
|
|
ckpt_path = self._resolve_path(ckpt_path, "models/ldm/stable-diffusion-v1")
|
|
if original_config_file:
|
|
original_config_file = self._resolve_path(
|
|
original_config_file, "configs/stable-diffusion"
|
|
)
|
|
|
|
new_config = None
|
|
|
|
from . import convert_ckpt_to_diffusers
|
|
|
|
model_name = model_name or diffusers_path.name
|
|
model_description = model_description or f"Converted version of {model_name}"
|
|
|
|
try:
|
|
if diffusers_path.exists():
|
|
self.logger.error(
|
|
f"The path {str(diffusers_path)} already exists. Installing previously-converted path."
|
|
)
|
|
else:
|
|
self.logger.debug(f"Converting {model_name} to diffusers (30-60s)")
|
|
|
|
# By passing the specified VAE to the conversion function, the autoencoder
|
|
# will be built into the model rather than tacked on afterward via the config file
|
|
vae_model = None
|
|
if vae:
|
|
vae_model = self._load_vae(vae)
|
|
vae_path = None
|
|
convert_ckpt_to_diffusers(
|
|
ckpt_path,
|
|
diffusers_path,
|
|
extract_ema=True,
|
|
original_config_file=original_config_file,
|
|
vae=vae_model,
|
|
vae_path=vae_path,
|
|
scan_needed=scan_needed,
|
|
)
|
|
self.logger.debug(
|
|
f"Success. Converted model is now located at {str(diffusers_path)}"
|
|
)
|
|
self.logger.debug(f"Writing new config file entry for {model_name}")
|
|
new_config = dict(
|
|
path=str(diffusers_path),
|
|
description=model_description,
|
|
format="diffusers",
|
|
)
|
|
if model_name in self.config:
|
|
self.del_model(model_name)
|
|
self.add_model(model_name, new_config, True)
|
|
if commit_to_conf:
|
|
self.commit(commit_to_conf)
|
|
self.logger.debug(f"Model {model_name} installed")
|
|
except Exception as e:
|
|
self.logger.warning(f"Conversion failed: {str(e)}")
|
|
self.logger.warning(traceback.format_exc())
|
|
self.logger.warning(
|
|
"If you are trying to convert an inpainting or 2.X model, please indicate the correct config file (e.g. v1-inpainting-inference.yaml)"
|
|
)
|
|
|
|
return model_name
|
|
|
|
def search_models(self, search_folder):
|
|
self.logger.info(f"Finding Models In: {search_folder}")
|
|
models_folder_ckpt = Path(search_folder).glob("**/*.ckpt")
|
|
models_folder_safetensors = Path(search_folder).glob("**/*.safetensors")
|
|
|
|
ckpt_files = [x for x in models_folder_ckpt if x.is_file()]
|
|
safetensor_files = [x for x in models_folder_safetensors if x.is_file()]
|
|
|
|
files = ckpt_files + safetensor_files
|
|
|
|
found_models = []
|
|
for file in files:
|
|
location = str(file.resolve()).replace("\\", "/")
|
|
if (
|
|
"model.safetensors" not in location
|
|
and "diffusion_pytorch_model.safetensors" not in location
|
|
):
|
|
found_models.append({"name": file.stem, "location": location})
|
|
|
|
return search_folder, found_models
|
|
|
|
def _make_cache_room(self) -> None:
|
|
num_loaded_models = len(self.models)
|
|
if num_loaded_models >= self.max_loaded_models:
|
|
least_recent_model = self._pop_oldest_model()
|
|
self.logger.info(
|
|
f"Cache limit (max={self.max_loaded_models}) reached. Purging {least_recent_model}"
|
|
)
|
|
if least_recent_model is not None:
|
|
del self.models[least_recent_model]
|
|
gc.collect()
|
|
|
|
def print_vram_usage(self) -> None:
|
|
if self._has_cuda:
|
|
self.logger.info(
|
|
"Current VRAM usage:"+
|
|
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9),
|
|
)
|
|
|
|
def commit(self, config_file_path: str) -> None:
|
|
"""
|
|
Write current configuration out to the indicated file.
|
|
"""
|
|
yaml_str = OmegaConf.to_yaml(self.config)
|
|
if not os.path.isabs(config_file_path):
|
|
config_file_path = self.globals.model_conf_path
|
|
tmpfile = os.path.join(os.path.dirname(config_file_path), "new_config.tmp")
|
|
with open(tmpfile, "w", encoding="utf-8") as outfile:
|
|
outfile.write(self.preamble())
|
|
outfile.write(yaml_str)
|
|
os.replace(tmpfile, config_file_path)
|
|
|
|
def preamble(self) -> str:
|
|
"""
|
|
Returns the preamble for the config file.
|
|
"""
|
|
return textwrap.dedent(
|
|
"""\
|
|
# This file describes the alternative machine learning models
|
|
# available to InvokeAI script.
|
|
#
|
|
# To add a new model, follow the examples below. Each
|
|
# model requires a model config file, a weights file,
|
|
# and the width and height of the images it
|
|
# was trained on.
|
|
"""
|
|
)
|
|
|
|
@classmethod
|
|
def migrate_models(cls):
|
|
"""
|
|
Migrate the ~/invokeai/models directory from the legacy format used through 2.2.5
|
|
to the 2.3.0 "diffusers" version. This should be a one-time operation, called at
|
|
script startup time.
|
|
"""
|
|
# Three transformer models to check: bert, clip and safety checker, and
|
|
# the diffusers as well
|
|
config = get_invokeai_config()
|
|
models_dir = config.root_dir / "models"
|
|
legacy_locations = [
|
|
Path(
|
|
models_dir,
|
|
"CompVis/stable-diffusion-safety-checker/models--CompVis--stable-diffusion-safety-checker",
|
|
),
|
|
Path(models_dir, "bert-base-uncased/models--bert-base-uncased"),
|
|
Path(
|
|
models_dir,
|
|
"openai/clip-vit-large-patch14/models--openai--clip-vit-large-patch14",
|
|
),
|
|
]
|
|
legacy_cache_dir = config.cache_dir / "../diffusers"
|
|
legacy_locations.extend(list(legacy_cache_dir.glob("*")))
|
|
legacy_layout = False
|
|
for model in legacy_locations:
|
|
legacy_layout = legacy_layout or model.exists()
|
|
if not legacy_layout:
|
|
return
|
|
|
|
print(
|
|
"""
|
|
>> ALERT:
|
|
>> The location of your previously-installed diffusers models needs to move from
|
|
>> invokeai/models/diffusers to invokeai/models/hub due to a change introduced by
|
|
>> diffusers version 0.14. InvokeAI will now move all models from the "diffusers" directory
|
|
>> into "hub" and then remove the diffusers directory. This is a quick, safe, one-time
|
|
>> operation. However if you have customized either of these directories and need to
|
|
>> make adjustments, please press ctrl-C now to abort and relaunch InvokeAI when you are ready.
|
|
>> Otherwise press <enter> to continue."""
|
|
)
|
|
input("continue> ")
|
|
|
|
# transformer files get moved into the hub directory
|
|
if cls._is_huggingface_hub_directory_present():
|
|
hub = config.cache_dir
|
|
else:
|
|
hub = models_dir / "hub"
|
|
|
|
os.makedirs(hub, exist_ok=True)
|
|
for model in legacy_locations:
|
|
source = models_dir / model
|
|
dest = hub / model.stem
|
|
if dest.exists() and not source.exists():
|
|
continue
|
|
cls.logger.info(f"{source} => {dest}")
|
|
if source.exists():
|
|
if dest.is_symlink():
|
|
logger.warning(f"Found symlink at {dest.name}. Not migrating.")
|
|
elif dest.exists():
|
|
if source.is_dir():
|
|
rmtree(source)
|
|
else:
|
|
source.unlink()
|
|
else:
|
|
move(source, dest)
|
|
|
|
# now clean up by removing any empty directories
|
|
empty = [
|
|
root
|
|
for root, dirs, files, in os.walk(models_dir)
|
|
if not len(dirs) and not len(files)
|
|
]
|
|
for d in empty:
|
|
os.rmdir(d)
|
|
cls.logger.info("Migration is done. Continuing...")
|
|
|
|
def _resolve_path(
|
|
self, source: Union[str, Path], dest_directory: str
|
|
) -> Optional[Path]:
|
|
resolved_path = None
|
|
if str(source).startswith(("http:", "https:", "ftp:")):
|
|
dest_directory = Path(dest_directory)
|
|
if not dest_directory.is_absolute():
|
|
dest_directory = self.globals.root_dir / dest_directory
|
|
dest_directory.mkdir(parents=True, exist_ok=True)
|
|
resolved_path = download_with_resume(str(source), dest_directory)
|
|
else:
|
|
source = self.globals.root_dir / source
|
|
resolved_path = source
|
|
return resolved_path
|
|
|
|
def _invalidate_cached_model(self, model_name: str) -> None:
|
|
self.offload_model(model_name)
|
|
if model_name in self.stack:
|
|
self.stack.remove(model_name)
|
|
self.models.pop(model_name, None)
|
|
|
|
def _pop_oldest_model(self):
|
|
"""
|
|
Remove the first element of the FIFO, which ought
|
|
to be the least recently accessed model. Do not
|
|
pop the last one, because it is in active use!
|
|
"""
|
|
return self.stack.pop(0)
|
|
|
|
def _push_newest_model(self, model_name: str) -> None:
|
|
"""
|
|
Maintain a simple FIFO. First element is always the
|
|
least recent, and last element is always the most recent.
|
|
"""
|
|
with contextlib.suppress(ValueError):
|
|
self.stack.remove(model_name)
|
|
self.stack.append(model_name)
|
|
|
|
def _add_embeddings_to_model(self, model: StableDiffusionGeneratorPipeline):
|
|
if self.embedding_path is not None:
|
|
self.logger.info(f"Loading embeddings from {self.embedding_path}")
|
|
for root, _, files in os.walk(self.embedding_path):
|
|
for name in files:
|
|
ti_path = os.path.join(root, name)
|
|
model.textual_inversion_manager.load_textual_inversion(
|
|
ti_path, defer_injecting_tokens=True
|
|
)
|
|
self.logger.info(
|
|
f'Textual inversion triggers: {", ".join(sorted(model.textual_inversion_manager.get_all_trigger_strings()))}'
|
|
)
|
|
|
|
def _has_cuda(self) -> bool:
|
|
return self.device.type == "cuda"
|
|
|
|
def _diffuser_sha256(
|
|
self, name_or_path: Union[str, Path], chunksize=16777216
|
|
) -> Union[str, bytes]:
|
|
path = None
|
|
if isinstance(name_or_path, Path):
|
|
path = name_or_path
|
|
else:
|
|
owner, repo = name_or_path.split("/")
|
|
path = self.globals.cache_dir / f"models--{owner}--{repo}"
|
|
if not path.exists():
|
|
return None
|
|
hashpath = path / "checksum.sha256"
|
|
if hashpath.exists() and path.stat().st_mtime <= hashpath.stat().st_mtime:
|
|
with open(hashpath) as f:
|
|
hash = f.read()
|
|
return hash
|
|
self.logger.debug("Calculating sha256 hash of model files")
|
|
tic = time.time()
|
|
sha = hashlib.sha256()
|
|
count = 0
|
|
for root, dirs, files in os.walk(path, followlinks=False):
|
|
for name in files:
|
|
count += 1
|
|
with open(os.path.join(root, name), "rb") as f:
|
|
while chunk := f.read(chunksize):
|
|
sha.update(chunk)
|
|
hash = sha.hexdigest()
|
|
toc = time.time()
|
|
self.logger.debug(f"sha256 = {hash} ({count} files hashed in {toc - tic:4.2f}s)")
|
|
with open(hashpath, "w") as f:
|
|
f.write(hash)
|
|
return hash
|
|
|
|
def _cached_sha256(self, path, data) -> Union[str, bytes]:
|
|
dirname = os.path.dirname(path)
|
|
basename = os.path.basename(path)
|
|
base, _ = os.path.splitext(basename)
|
|
hashpath = os.path.join(dirname, base + ".sha256")
|
|
|
|
if os.path.exists(hashpath) and os.path.getmtime(path) <= os.path.getmtime(
|
|
hashpath
|
|
):
|
|
with open(hashpath) as f:
|
|
hash = f.read()
|
|
return hash
|
|
|
|
self.logger.debug("Calculating sha256 hash of weights file")
|
|
tic = time.time()
|
|
sha = hashlib.sha256()
|
|
sha.update(data)
|
|
hash = sha.hexdigest()
|
|
toc = time.time()
|
|
self.logger.debug(f"sha256 = {hash} "+"(%4.2fs)" % (toc - tic))
|
|
|
|
with open(hashpath, "w") as f:
|
|
f.write(hash)
|
|
return hash
|
|
|
|
def _load_vae(self, vae_config) -> AutoencoderKL:
|
|
vae_args = {}
|
|
try:
|
|
name_or_path = self.model_name_or_path(vae_config)
|
|
except Exception:
|
|
return None
|
|
if name_or_path is None:
|
|
return None
|
|
using_fp16 = self.precision == "float16"
|
|
|
|
vae_args.update(
|
|
cache_dir=self.globals.cache_dir,
|
|
local_files_only=not self.globals.internet_available,
|
|
)
|
|
|
|
self.logger.debug(f"Loading diffusers VAE from {name_or_path}")
|
|
if using_fp16:
|
|
vae_args.update(torch_dtype=torch.float16)
|
|
fp_args_list = [{"revision": "fp16"}, {}]
|
|
else:
|
|
self.logger.debug("Using more accurate float32 precision")
|
|
fp_args_list = [{}]
|
|
|
|
vae = None
|
|
deferred_error = None
|
|
|
|
# A VAE may be in a subfolder of a model's repository.
|
|
if "subfolder" in vae_config:
|
|
vae_args["subfolder"] = vae_config["subfolder"]
|
|
|
|
for fp_args in fp_args_list:
|
|
# At some point we might need to be able to use different classes here? But for now I think
|
|
# all Stable Diffusion VAE are AutoencoderKL.
|
|
try:
|
|
vae = AutoencoderKL.from_pretrained(name_or_path, **vae_args, **fp_args)
|
|
except OSError as e:
|
|
if str(e).startswith("fp16 is not a valid"):
|
|
pass
|
|
else:
|
|
deferred_error = e
|
|
if vae:
|
|
break
|
|
|
|
if not vae and deferred_error:
|
|
self.logger.warning(f"Could not load VAE {name_or_path}: {str(deferred_error)}")
|
|
|
|
return vae
|
|
|
|
@classmethod
|
|
def _delete_model_from_cache(cls,repo_id):
|
|
cache_info = scan_cache_dir(get_invokeai_config().cache_dir)
|
|
|
|
# I'm sure there is a way to do this with comprehensions
|
|
# but the code quickly became incomprehensible!
|
|
hashes_to_delete = set()
|
|
for repo in cache_info.repos:
|
|
if repo.repo_id == repo_id:
|
|
for revision in repo.revisions:
|
|
hashes_to_delete.add(revision.commit_hash)
|
|
strategy = cache_info.delete_revisions(*hashes_to_delete)
|
|
cls.logger.warning(
|
|
f"Deletion of this model is expected to free {strategy.expected_freed_size_str}"
|
|
)
|
|
strategy.execute()
|
|
|
|
@staticmethod
|
|
def _abs_path(path: str | Path) -> Path:
|
|
globals = get_invokeai_config()
|
|
if path is None or Path(path).is_absolute():
|
|
return path
|
|
return Path(globals.root_dir, path).resolve()
|
|
|
|
@staticmethod
|
|
def _is_huggingface_hub_directory_present() -> bool:
|
|
return (
|
|
os.getenv("HF_HOME") is not None or os.getenv("XDG_CACHE_HOME") is not None
|
|
)
|
|
|
|
def list_lora_models(self)->Dict[str,bool]:
|
|
'''Return a dict of installed lora models; key is either the shortname
|
|
defined in INITIAL_MODELS, or the basename of the file in the LoRA
|
|
directory. Value is True if installed'''
|
|
|
|
models = OmegaConf.load(Dataset_path).get('lora') or {}
|
|
installed_models = {x: False for x in models.keys()}
|
|
|
|
dir = self.globals.lora_path
|
|
installed_models = dict()
|
|
for root, dirs, files in os.walk(dir):
|
|
for name in files:
|
|
if Path(name).suffix not in ['.safetensors','.ckpt','.pt','.bin']:
|
|
continue
|
|
if name == 'pytorch_lora_weights.bin':
|
|
name = Path(root,name).parent.stem #Path(root,name).stem
|
|
else:
|
|
name = Path(name).stem
|
|
installed_models.update({name: True})
|
|
|
|
return installed_models
|
|
|
|
def install_lora_models(self, model_names: list[str], access_token:str=None):
|
|
'''Download list of LoRA/LyCORIS models'''
|
|
|
|
short_names = OmegaConf.load(Dataset_path).get('lora') or {}
|
|
for name in model_names:
|
|
print(name)
|
|
|
|
name = short_names.get(name) or name
|
|
|
|
# HuggingFace style LoRA
|
|
if re.match(r"^[\w.+-]+/([\w.+-]+)$", name):
|
|
self.logger.info(f'Downloading LoRA/LyCORIS model {name}')
|
|
_,dest_dir = name.split("/")
|
|
|
|
hf_download_with_resume(
|
|
repo_id = name,
|
|
model_dir = self.globals.lora_path / dest_dir,
|
|
model_name = 'pytorch_lora_weights.bin',
|
|
access_token = access_token,
|
|
)
|
|
|
|
elif name.startswith(("http:", "https:", "ftp:")):
|
|
download_with_resume(name, self.globals.lora_path)
|
|
|
|
else:
|
|
self.logger.error(f"Unknown repo_id or URL: {name}")
|
|
|
|
def delete_lora_models(self, model_names: List[str]):
|
|
'''Remove the list of lora models'''
|
|
for name in model_names:
|
|
file_or_directory = self.globals.lora_path / name
|
|
if file_or_directory.is_dir():
|
|
self.logger.info(f'Purging LoRA/LyCORIS {name}')
|
|
shutil.rmtree(str(file_or_directory))
|
|
else:
|
|
for path in self.globals.lora_path.glob(f'{name}.*'):
|
|
self.logger.info(f'Purging LoRA/LyCORIS {name}')
|
|
path.unlink()
|
|
|
|
def list_ti_models(self)->Dict[str,bool]:
|
|
'''Return a dict of installed textual models; key is either the shortname
|
|
defined in INITIAL_MODELS, or the basename of the file in the LoRA
|
|
directory. Value is True if installed'''
|
|
|
|
models = OmegaConf.load(Dataset_path).get('textual_inversion') or {}
|
|
installed_models = {x: False for x in models.keys()}
|
|
|
|
dir = self.globals.embedding_path
|
|
for root, dirs, files in os.walk(dir):
|
|
for name in files:
|
|
if not Path(name).suffix in ['.bin','.pt','.ckpt','.safetensors']:
|
|
continue
|
|
if name == 'learned_embeds.bin':
|
|
name = Path(root,name).parent.stem #Path(root,name).stem
|
|
else:
|
|
name = Path(name).stem
|
|
installed_models.update({name: True})
|
|
return installed_models
|
|
|
|
def install_ti_models(self, model_names: list[str], access_token: str=None):
|
|
'''Download list of textual inversion embeddings'''
|
|
|
|
short_names = OmegaConf.load(Dataset_path).get('textual_inversion') or {}
|
|
for name in model_names:
|
|
name = short_names.get(name) or name
|
|
|
|
if re.match(r"^[\w.+-]+/([\w.+-]+)$", name):
|
|
self.logger.info(f'Downloading Textual Inversion embedding {name}')
|
|
_,dest_dir = name.split("/")
|
|
hf_download_with_resume(
|
|
repo_id = name,
|
|
model_dir = self.globals.embedding_path / dest_dir,
|
|
model_name = 'learned_embeds.bin',
|
|
access_token = access_token
|
|
)
|
|
elif name.startswith(('http:','https:','ftp:')):
|
|
download_with_resume(name, self.globals.embedding_path)
|
|
else:
|
|
self.logger.error(f'{name} does not look like either a HuggingFace repo_id or a downloadable URL')
|
|
|
|
def delete_ti_models(self, model_names: list[str]):
|
|
'''Remove TI embeddings from disk'''
|
|
for name in model_names:
|
|
file_or_directory = self.globals.embedding_path / name
|
|
if file_or_directory.is_dir():
|
|
self.logger.info(f'Purging textual inversion embedding {name}')
|
|
shutil.rmtree(str(file_or_directory))
|
|
else:
|
|
for path in self.globals.embedding_path.glob(f'{name}.*'):
|
|
self.logger.info(f'Purging textual inversion embedding {name}')
|
|
path.unlink()
|
|
|
|
def list_controlnet_models(self)->Dict[str,bool]:
|
|
'''Return a dict of installed controlnet models; key is repo_id or short name
|
|
of model (defined in INITIAL_MODELS), and value is True if installed'''
|
|
|
|
cn_models = OmegaConf.load(Dataset_path).get('controlnet') or {}
|
|
installed_models = {x: False for x in cn_models.keys()}
|
|
|
|
cn_dir = self.globals.controlnet_path
|
|
for root, dirs, files in os.walk(cn_dir):
|
|
for name in dirs:
|
|
if Path(root, name, '.download_complete').exists():
|
|
installed_models.update({name.replace('--','/'): True})
|
|
return installed_models
|
|
|
|
def install_controlnet_models(self, model_names: list[str], access_token: str=None):
|
|
'''Download list of controlnet models; provide either repo_id or short name listed in INITIAL_MODELS.yaml'''
|
|
short_names = OmegaConf.load(Dataset_path).get('controlnet') or {}
|
|
dest_dir = self.globals.controlnet_path
|
|
dest_dir.mkdir(parents=True,exist_ok=True)
|
|
|
|
# The model file may be fp32 or fp16, and may be either a
|
|
# .bin file or a .safetensors. We try each until we get one,
|
|
# preferring 'fp16' if using half precision, and preferring
|
|
# safetensors over over bin.
|
|
precisions = ['.fp16',''] if self.precision=='float16' else ['']
|
|
formats = ['.safetensors','.bin']
|
|
possible_filenames = list()
|
|
for p in precisions:
|
|
for f in formats:
|
|
possible_filenames.append(Path(f'diffusion_pytorch_model{p}{f}'))
|
|
|
|
for directory_name in model_names:
|
|
repo_id = short_names.get(directory_name) or directory_name
|
|
safe_name = directory_name.replace('/','--')
|
|
self.logger.info(f'Downloading ControlNet model {directory_name} ({repo_id})')
|
|
hf_download_with_resume(
|
|
repo_id = repo_id,
|
|
model_dir = dest_dir / safe_name,
|
|
model_name = 'config.json',
|
|
access_token = access_token
|
|
)
|
|
|
|
path = None
|
|
for filename in possible_filenames:
|
|
suffix = filename.suffix
|
|
dest_filename = Path(f'diffusion_pytorch_model{suffix}')
|
|
self.logger.info(f'Checking availability of {directory_name}/{filename}...')
|
|
path = hf_download_with_resume(
|
|
repo_id = repo_id,
|
|
model_dir = dest_dir / safe_name,
|
|
model_name = str(filename),
|
|
access_token = access_token,
|
|
model_dest = Path(dest_dir, safe_name, dest_filename),
|
|
)
|
|
if path:
|
|
(path.parent / '.download_complete').touch()
|
|
break
|
|
|
|
def delete_controlnet_models(self, model_names: List[str]):
|
|
'''Remove the list of controlnet models'''
|
|
for name in model_names:
|
|
safe_name = name.replace('/','--')
|
|
directory = self.globals.controlnet_path / safe_name
|
|
if directory.exists():
|
|
self.logger.info(f'Purging controlnet model {name}')
|
|
shutil.rmtree(str(directory))
|
|
|
|
|
|
|