mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
143 lines
4.6 KiB
Python
143 lines
4.6 KiB
Python
from __future__ import annotations
|
|
|
|
from abc import ABC, abstractmethod
|
|
from contextlib import ExitStack, contextmanager
|
|
from functools import partial
|
|
from typing import TYPE_CHECKING, Callable, Dict
|
|
|
|
import torch
|
|
from diffusers import UNet2DConditionModel
|
|
|
|
from invokeai.backend.util.devices import TorchDevice
|
|
|
|
if TYPE_CHECKING:
|
|
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
|
|
from invokeai.backend.stable_diffusion.extensions import ExtensionBase
|
|
|
|
|
|
class ExtCallbacksApi(ABC):
|
|
@abstractmethod
|
|
def setup(self, ctx: DenoiseContext, ext_manager: ExtensionsManager):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def pre_denoise_loop(self, ctx: DenoiseContext, ext_manager: ExtensionsManager):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def post_denoise_loop(self, ctx: DenoiseContext, ext_manager: ExtensionsManager):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def pre_step(self, ctx: DenoiseContext, ext_manager: ExtensionsManager):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def post_step(self, ctx: DenoiseContext, ext_manager: ExtensionsManager):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def pre_unet(self, ctx: DenoiseContext, ext_manager: ExtensionsManager):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def post_unet(self, ctx: DenoiseContext, ext_manager: ExtensionsManager):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def post_apply_cfg(self, ctx: DenoiseContext, ext_manager: ExtensionsManager):
|
|
pass
|
|
|
|
|
|
class ProxyCallsClass:
|
|
def __init__(self, handler):
|
|
self._handler = handler
|
|
|
|
def __getattr__(self, item):
|
|
return partial(self._handler, item)
|
|
|
|
|
|
class CallbackInjectionPoint:
|
|
def __init__(self):
|
|
self.handlers = {}
|
|
|
|
def add(self, func: Callable, order: int):
|
|
if order not in self.handlers:
|
|
self.handlers[order] = []
|
|
self.handlers[order].append(func)
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
for order in sorted(self.handlers.keys(), reverse=True):
|
|
for handler in self.handlers[order]:
|
|
handler(*args, **kwargs)
|
|
|
|
|
|
class ExtensionsManager:
|
|
def __init__(self):
|
|
self.extensions = []
|
|
|
|
self._callbacks = {}
|
|
self.callbacks: ExtCallbacksApi = ProxyCallsClass(self.call_callback)
|
|
|
|
def add_extension(self, ext: ExtensionBase):
|
|
self.extensions.append(ext)
|
|
|
|
self._callbacks.clear()
|
|
|
|
for ext in self.extensions:
|
|
for inj_info in ext.injections:
|
|
if inj_info.type == "callback":
|
|
if inj_info.name not in self._callbacks:
|
|
self._callbacks[inj_info.name] = CallbackInjectionPoint()
|
|
self._callbacks[inj_info.name].add(inj_info.function, inj_info.order)
|
|
|
|
else:
|
|
raise Exception(f"Unsupported injection type: {inj_info.type}")
|
|
|
|
def call_callback(self, name: str, *args, **kwargs):
|
|
if name in self._callbacks:
|
|
self._callbacks[name](*args, **kwargs)
|
|
|
|
@contextmanager
|
|
def patch_extensions(self, context: DenoiseContext):
|
|
with ExitStack() as exit_stack:
|
|
for ext in self.extensions:
|
|
exit_stack.enter_context(ext.patch_extension(context))
|
|
|
|
yield None
|
|
|
|
@contextmanager
|
|
def patch_unet(self, state_dict: Dict[str, torch.Tensor], unet: UNet2DConditionModel):
|
|
exit_stack = ExitStack()
|
|
try:
|
|
changed_keys = set()
|
|
changed_unknown_keys = {}
|
|
|
|
for ext in self.extensions:
|
|
patch_result = exit_stack.enter_context(ext.patch_unet(state_dict, unet))
|
|
if patch_result is None:
|
|
continue
|
|
new_keys, new_unk_keys = patch_result
|
|
changed_keys.update(new_keys)
|
|
# skip already seen keys, as new weight might be changed
|
|
for k, v in new_unk_keys.items():
|
|
if k in changed_unknown_keys:
|
|
continue
|
|
changed_unknown_keys[k] = v
|
|
|
|
yield None
|
|
|
|
finally:
|
|
exit_stack.close()
|
|
assert hasattr(unet, "get_submodule") # mypy not picking up fact that torch.nn.Module has get_submodule()
|
|
with torch.no_grad():
|
|
for module_key in changed_keys:
|
|
weight = state_dict[module_key]
|
|
unet.get_submodule(module_key).weight.copy_(
|
|
weight, non_blocking=TorchDevice.get_non_blocking(weight.device)
|
|
)
|
|
for module_key, weight in changed_unknown_keys.items():
|
|
unet.get_submodule(module_key).weight.copy_(
|
|
weight, non_blocking=TorchDevice.get_non_blocking(weight.device)
|
|
)
|