mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
feat(nodes): add ResultsServiceABC & SqliteResultsService **Doesn't actually work bc of circular imports. Can't even test it.** - add a base class for ResultsService and SQLite implementation - use `graph_execution_manager` `on_changed` callback to keep `results` table in sync fix(nodes): fix results service bugs chore(ui): regen api fix(ui): fix type guards feat(nodes): add `result_type` to results table, fix types fix(nodes): do not shadow `list` builtin feat(nodes): add results router It doesn't work due to circular imports still fix(nodes): Result class should use outputs classes, not fields feat(ui): crude results router fix(ui): send to canvas in currentimagebuttons not working feat(nodes): add core metadata builder feat(nodes): add design doc feat(nodes): wip latents db stuff feat(nodes): images_db_service and resources router feat(nodes): wip images db & router feat(nodes): update image related names feat(nodes): update urlservice feat(nodes): add high-level images service
71 lines
2.9 KiB
Python
71 lines
2.9 KiB
Python
from typing import Optional
|
|
from pydantic import BaseModel, Field, StrictFloat, StrictInt, StrictStr
|
|
|
|
|
|
class GeneratedImageOrLatentsMetadata(BaseModel):
|
|
"""Core generation metadata for an image/tensor generated in InvokeAI.
|
|
|
|
Generated by traversing the execution graph, collecting the parameters of the nearest ancestors of a given node.
|
|
|
|
Full metadata may be accessed by querying for the session in the `graph_executions` table.
|
|
"""
|
|
|
|
positive_conditioning: Optional[StrictStr] = Field(
|
|
default=None, description="The positive conditioning."
|
|
)
|
|
negative_conditioning: Optional[StrictStr] = Field(
|
|
default=None, description="The negative conditioning."
|
|
)
|
|
width: Optional[StrictInt] = Field(
|
|
default=None, description="Width of the image/tensor in pixels."
|
|
)
|
|
height: Optional[StrictInt] = Field(
|
|
default=None, description="Height of the image/tensor in pixels."
|
|
)
|
|
seed: Optional[StrictInt] = Field(
|
|
default=None, description="The seed used for noise generation."
|
|
)
|
|
cfg_scale: Optional[StrictFloat] = Field(
|
|
default=None, description="The classifier-free guidance scale."
|
|
)
|
|
steps: Optional[StrictInt] = Field(
|
|
default=None, description="The number of steps used for inference."
|
|
)
|
|
scheduler: Optional[StrictStr] = Field(
|
|
default=None, description="The scheduler used for inference."
|
|
)
|
|
model: Optional[StrictStr] = Field(
|
|
default=None, description="The model used for inference."
|
|
)
|
|
strength: Optional[StrictFloat] = Field(
|
|
default=None,
|
|
description="The strength used for image-to-image/tensor-to-tensor.",
|
|
)
|
|
image: Optional[StrictStr] = Field(
|
|
default=None, description="The ID of the initial image."
|
|
)
|
|
tensor: Optional[StrictStr] = Field(
|
|
default=None, description="The ID of the initial tensor."
|
|
)
|
|
# Pending model refactor:
|
|
# vae: Optional[str] = Field(default=None,description="The VAE used for decoding.")
|
|
# unet: Optional[str] = Field(default=None,description="The UNet used dor inference.")
|
|
# clip: Optional[str] = Field(default=None,description="The CLIP Encoder used for conditioning.")
|
|
|
|
|
|
class UploadedImageOrLatentsMetadata(BaseModel):
|
|
"""Limited metadata for an uploaded image/tensor."""
|
|
|
|
width: Optional[StrictInt] = Field(
|
|
default=None, description="Width of the image/tensor in pixels."
|
|
)
|
|
height: Optional[StrictInt] = Field(
|
|
default=None, description="Height of the image/tensor in pixels."
|
|
)
|
|
# The extra field will be the contents of the PNG file's tEXt chunk. It may have come
|
|
# from another SD application or InvokeAI, so it needs to be flexible.
|
|
# If the upload is a not an image or `image_latents` tensor, this will be omitted.
|
|
extra: Optional[StrictStr] = Field(
|
|
default=None, description="Extra metadata, extracted from the PNG tEXt chunk."
|
|
)
|