mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
275 lines
8.9 KiB
Python
275 lines
8.9 KiB
Python
from cmath import log
|
|
import torch
|
|
from torch import nn
|
|
|
|
import sys
|
|
|
|
from ldm.data.personalized import per_img_token_list
|
|
from transformers import CLIPTokenizer
|
|
from functools import partial
|
|
|
|
DEFAULT_PLACEHOLDER_TOKEN = ['*']
|
|
|
|
PROGRESSIVE_SCALE = 2000
|
|
|
|
|
|
def get_clip_token_for_string(tokenizer, string):
|
|
batch_encoding = tokenizer(
|
|
string,
|
|
truncation=True,
|
|
max_length=77,
|
|
return_length=True,
|
|
return_overflowing_tokens=False,
|
|
padding='max_length',
|
|
return_tensors='pt',
|
|
)
|
|
tokens = batch_encoding['input_ids']
|
|
""" assert (
|
|
torch.count_nonzero(tokens - 49407) == 2
|
|
), f"String '{string}' maps to more than a single token. Please use another string" """
|
|
|
|
return tokens[0, 1]
|
|
|
|
|
|
def get_bert_token_for_string(tokenizer, string):
|
|
token = tokenizer(string)
|
|
# assert torch.count_nonzero(token) == 3, f"String '{string}' maps to more than a single token. Please use another string"
|
|
|
|
token = token[0, 1]
|
|
|
|
return token
|
|
|
|
|
|
def get_embedding_for_clip_token(embedder, token):
|
|
return embedder(token.unsqueeze(0))[0, 0]
|
|
|
|
|
|
class EmbeddingManager(nn.Module):
|
|
def __init__(
|
|
self,
|
|
embedder,
|
|
placeholder_strings=None,
|
|
initializer_words=None,
|
|
per_image_tokens=False,
|
|
num_vectors_per_token=1,
|
|
progressive_words=False,
|
|
**kwargs,
|
|
):
|
|
super().__init__()
|
|
|
|
self.embedder = embedder
|
|
|
|
self.string_to_token_dict = {}
|
|
self.string_to_param_dict = nn.ParameterDict()
|
|
|
|
self.initial_embeddings = (
|
|
nn.ParameterDict()
|
|
) # These should not be optimized
|
|
|
|
self.progressive_words = progressive_words
|
|
self.progressive_counter = 0
|
|
|
|
self.max_vectors_per_token = num_vectors_per_token
|
|
|
|
if hasattr(
|
|
embedder, 'tokenizer'
|
|
): # using Stable Diffusion's CLIP encoder
|
|
self.is_clip = True
|
|
get_token_for_string = partial(
|
|
get_clip_token_for_string, embedder.tokenizer
|
|
)
|
|
get_embedding_for_tkn = partial(
|
|
get_embedding_for_clip_token,
|
|
embedder.transformer.text_model.embeddings,
|
|
)
|
|
# per bug report #572
|
|
#token_dim = 1280
|
|
token_dim = 768
|
|
else: # using LDM's BERT encoder
|
|
self.is_clip = False
|
|
get_token_for_string = partial(
|
|
get_bert_token_for_string, embedder.tknz_fn
|
|
)
|
|
get_embedding_for_tkn = embedder.transformer.token_emb
|
|
token_dim = 1280
|
|
|
|
if per_image_tokens:
|
|
placeholder_strings.extend(per_img_token_list)
|
|
|
|
for idx, placeholder_string in enumerate(placeholder_strings):
|
|
|
|
token = get_token_for_string(placeholder_string)
|
|
|
|
if initializer_words and idx < len(initializer_words):
|
|
init_word_token = get_token_for_string(initializer_words[idx])
|
|
|
|
with torch.no_grad():
|
|
init_word_embedding = get_embedding_for_tkn(
|
|
init_word_token.cpu()
|
|
)
|
|
|
|
token_params = torch.nn.Parameter(
|
|
init_word_embedding.unsqueeze(0).repeat(
|
|
num_vectors_per_token, 1
|
|
),
|
|
requires_grad=True,
|
|
)
|
|
self.initial_embeddings[
|
|
placeholder_string
|
|
] = torch.nn.Parameter(
|
|
init_word_embedding.unsqueeze(0).repeat(
|
|
num_vectors_per_token, 1
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
else:
|
|
token_params = torch.nn.Parameter(
|
|
torch.rand(
|
|
size=(num_vectors_per_token, token_dim),
|
|
requires_grad=True,
|
|
)
|
|
)
|
|
|
|
self.string_to_token_dict[placeholder_string] = token
|
|
self.string_to_param_dict[placeholder_string] = token_params
|
|
|
|
def forward(
|
|
self,
|
|
tokenized_text,
|
|
embedded_text,
|
|
):
|
|
b, n, device = *tokenized_text.shape, tokenized_text.device
|
|
|
|
for (
|
|
placeholder_string,
|
|
placeholder_token,
|
|
) in self.string_to_token_dict.items():
|
|
|
|
placeholder_embedding = self.string_to_param_dict[
|
|
placeholder_string
|
|
].to(device)
|
|
|
|
if (
|
|
self.max_vectors_per_token == 1
|
|
): # If there's only one vector per token, we can do a simple replacement
|
|
placeholder_idx = torch.where(
|
|
tokenized_text == placeholder_token.to(device)
|
|
)
|
|
embedded_text[placeholder_idx] = placeholder_embedding
|
|
else: # otherwise, need to insert and keep track of changing indices
|
|
if self.progressive_words:
|
|
self.progressive_counter += 1
|
|
max_step_tokens = (
|
|
1 + self.progressive_counter // PROGRESSIVE_SCALE
|
|
)
|
|
else:
|
|
max_step_tokens = self.max_vectors_per_token
|
|
|
|
num_vectors_for_token = min(
|
|
placeholder_embedding.shape[0], max_step_tokens
|
|
)
|
|
|
|
placeholder_rows, placeholder_cols = torch.where(
|
|
tokenized_text == placeholder_token.to(device)
|
|
)
|
|
|
|
if placeholder_rows.nelement() == 0:
|
|
continue
|
|
|
|
sorted_cols, sort_idx = torch.sort(
|
|
placeholder_cols, descending=True
|
|
)
|
|
sorted_rows = placeholder_rows[sort_idx]
|
|
|
|
for idx in range(len(sorted_rows)):
|
|
row = sorted_rows[idx]
|
|
col = sorted_cols[idx]
|
|
|
|
new_token_row = torch.cat(
|
|
[
|
|
tokenized_text[row][:col],
|
|
placeholder_token.repeat(num_vectors_for_token).to(
|
|
device
|
|
),
|
|
tokenized_text[row][col + 1 :],
|
|
],
|
|
axis=0,
|
|
)[:n]
|
|
new_embed_row = torch.cat(
|
|
[
|
|
embedded_text[row][:col],
|
|
placeholder_embedding[:num_vectors_for_token],
|
|
embedded_text[row][col + 1 :],
|
|
],
|
|
axis=0,
|
|
)[:n]
|
|
|
|
embedded_text[row] = new_embed_row
|
|
tokenized_text[row] = new_token_row
|
|
|
|
return embedded_text
|
|
|
|
def save(self, ckpt_path):
|
|
torch.save(
|
|
{
|
|
'string_to_token': self.string_to_token_dict,
|
|
'string_to_param': self.string_to_param_dict,
|
|
},
|
|
ckpt_path,
|
|
)
|
|
|
|
def load(self, ckpt_path, full=True):
|
|
ckpt = torch.load(ckpt_path, map_location='cpu')
|
|
|
|
# Handle .pt textual inversion files
|
|
if 'string_to_token' in ckpt and 'string_to_param' in ckpt:
|
|
self.string_to_token_dict = ckpt["string_to_token"]
|
|
self.string_to_param_dict = ckpt["string_to_param"]
|
|
|
|
# Handle .bin textual inversion files from Huggingface Concepts
|
|
# https://huggingface.co/sd-concepts-library
|
|
else:
|
|
for token_str in list(ckpt.keys()):
|
|
token = get_clip_token_for_string(self.embedder.tokenizer, token_str)
|
|
self.string_to_token_dict[token_str] = token
|
|
ckpt[token_str] = torch.nn.Parameter(ckpt[token_str])
|
|
|
|
self.string_to_param_dict.update(ckpt)
|
|
|
|
if not full:
|
|
for key, value in self.string_to_param_dict.items():
|
|
self.string_to_param_dict[key] = torch.nn.Parameter(value.half())
|
|
|
|
print(f'Added terms: {", ".join(self.string_to_param_dict.keys())}')
|
|
|
|
def get_embedding_norms_squared(self):
|
|
all_params = torch.cat(
|
|
list(self.string_to_param_dict.values()), axis=0
|
|
) # num_placeholders x embedding_dim
|
|
param_norm_squared = (all_params * all_params).sum(
|
|
axis=-1
|
|
) # num_placeholders
|
|
|
|
return param_norm_squared
|
|
|
|
def embedding_parameters(self):
|
|
return self.string_to_param_dict.parameters()
|
|
|
|
def embedding_to_coarse_loss(self):
|
|
|
|
loss = 0.0
|
|
num_embeddings = len(self.initial_embeddings)
|
|
|
|
for key in self.initial_embeddings:
|
|
optimized = self.string_to_param_dict[key]
|
|
coarse = self.initial_embeddings[key].clone().to(optimized.device)
|
|
|
|
loss = (
|
|
loss
|
|
+ (optimized - coarse)
|
|
@ (optimized - coarse).T
|
|
/ num_embeddings
|
|
)
|
|
|
|
return loss
|