mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
492 lines
18 KiB
Python
492 lines
18 KiB
Python
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
|
|
|
import argparse
|
|
import re
|
|
import shlex
|
|
import sys
|
|
import time
|
|
import sqlite3
|
|
from typing import Union, get_type_hints, Optional
|
|
|
|
from pydantic import BaseModel, ValidationError
|
|
from pydantic.fields import Field
|
|
|
|
# This should come early so that the logger can pick up its configuration options
|
|
from .services.config import InvokeAIAppConfig
|
|
from invokeai.backend.util.logging import InvokeAILogger
|
|
from invokeai.version.invokeai_version import __version__
|
|
|
|
|
|
from invokeai.app.services.board_image_record_storage import (
|
|
SqliteBoardImageRecordStorage,
|
|
)
|
|
from invokeai.app.services.board_images import (
|
|
BoardImagesService,
|
|
BoardImagesServiceDependencies,
|
|
)
|
|
from invokeai.app.services.board_record_storage import SqliteBoardRecordStorage
|
|
from invokeai.app.services.boards import BoardService, BoardServiceDependencies
|
|
from invokeai.app.services.image_record_storage import SqliteImageRecordStorage
|
|
from invokeai.app.services.images import ImageService, ImageServiceDependencies
|
|
from invokeai.app.services.resource_name import SimpleNameService
|
|
from invokeai.app.services.urls import LocalUrlService
|
|
from invokeai.app.services.batch_manager import BatchManager
|
|
from invokeai.app.services.batch_manager_storage import SqliteBatchProcessStorage
|
|
from invokeai.app.services.invocation_stats import InvocationStatsService
|
|
from .services.default_graphs import default_text_to_image_graph_id, create_system_graphs
|
|
from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
|
|
|
|
from .cli.commands import BaseCommand, CliContext, ExitCli, SortedHelpFormatter, add_graph_parsers, add_parsers
|
|
from .cli.completer import set_autocompleter
|
|
from .invocations.baseinvocation import BaseInvocation
|
|
from .services.events import EventServiceBase
|
|
from .services.graph import (
|
|
Edge,
|
|
EdgeConnection,
|
|
GraphExecutionState,
|
|
GraphInvocation,
|
|
LibraryGraph,
|
|
are_connection_types_compatible,
|
|
)
|
|
from .services.image_file_storage import DiskImageFileStorage
|
|
from .services.invocation_queue import MemoryInvocationQueue
|
|
from .services.invocation_services import InvocationServices
|
|
from .services.invoker import Invoker
|
|
from .services.model_manager_service import ModelManagerService
|
|
from .services.processor import DefaultInvocationProcessor
|
|
from .services.sqlite import SqliteItemStorage
|
|
|
|
import torch
|
|
import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import)
|
|
|
|
if torch.backends.mps.is_available():
|
|
import invokeai.backend.util.mps_fixes # noqa: F401 (monkeypatching on import)
|
|
|
|
|
|
config = InvokeAIAppConfig.get_config()
|
|
config.parse_args()
|
|
logger = InvokeAILogger().getLogger(config=config)
|
|
|
|
|
|
class CliCommand(BaseModel):
|
|
command: Union[BaseCommand.get_commands() + BaseInvocation.get_invocations()] = Field(discriminator="type") # type: ignore
|
|
|
|
|
|
class InvalidArgs(Exception):
|
|
pass
|
|
|
|
|
|
def add_invocation_args(command_parser):
|
|
# Add linking capability
|
|
command_parser.add_argument(
|
|
"--link",
|
|
"-l",
|
|
action="append",
|
|
nargs=3,
|
|
help="A link in the format 'source_node source_field dest_field'. source_node can be relative to history (e.g. -1)",
|
|
)
|
|
|
|
command_parser.add_argument(
|
|
"--link_node",
|
|
"-ln",
|
|
action="append",
|
|
help="A link from all fields in the specified node. Node can be relative to history (e.g. -1)",
|
|
)
|
|
|
|
|
|
def get_command_parser(services: InvocationServices) -> argparse.ArgumentParser:
|
|
# Create invocation parser
|
|
parser = argparse.ArgumentParser(formatter_class=SortedHelpFormatter)
|
|
|
|
def exit(*args, **kwargs):
|
|
raise InvalidArgs
|
|
|
|
parser.exit = exit
|
|
subparsers = parser.add_subparsers(dest="type")
|
|
|
|
# Create subparsers for each invocation
|
|
invocations = BaseInvocation.get_all_subclasses()
|
|
add_parsers(subparsers, invocations, add_arguments=add_invocation_args)
|
|
|
|
# Create subparsers for each command
|
|
commands = BaseCommand.get_all_subclasses()
|
|
add_parsers(subparsers, commands, exclude_fields=["type"])
|
|
|
|
# Create subparsers for exposed CLI graphs
|
|
# TODO: add a way to identify these graphs
|
|
text_to_image = services.graph_library.get(default_text_to_image_graph_id)
|
|
add_graph_parsers(subparsers, [text_to_image], add_arguments=add_invocation_args)
|
|
|
|
return parser
|
|
|
|
|
|
class NodeField:
|
|
alias: str
|
|
node_path: str
|
|
field: str
|
|
field_type: type
|
|
|
|
def __init__(self, alias: str, node_path: str, field: str, field_type: type):
|
|
self.alias = alias
|
|
self.node_path = node_path
|
|
self.field = field
|
|
self.field_type = field_type
|
|
|
|
|
|
def fields_from_type_hints(hints: dict[str, type], node_path: str) -> dict[str, NodeField]:
|
|
return {k: NodeField(alias=k, node_path=node_path, field=k, field_type=v) for k, v in hints.items()}
|
|
|
|
|
|
def get_node_input_field(graph: LibraryGraph, field_alias: str, node_id: str) -> NodeField:
|
|
"""Gets the node field for the specified field alias"""
|
|
exposed_input = next(e for e in graph.exposed_inputs if e.alias == field_alias)
|
|
node_type = type(graph.graph.get_node(exposed_input.node_path))
|
|
return NodeField(
|
|
alias=exposed_input.alias,
|
|
node_path=f"{node_id}.{exposed_input.node_path}",
|
|
field=exposed_input.field,
|
|
field_type=get_type_hints(node_type)[exposed_input.field],
|
|
)
|
|
|
|
|
|
def get_node_output_field(graph: LibraryGraph, field_alias: str, node_id: str) -> NodeField:
|
|
"""Gets the node field for the specified field alias"""
|
|
exposed_output = next(e for e in graph.exposed_outputs if e.alias == field_alias)
|
|
node_type = type(graph.graph.get_node(exposed_output.node_path))
|
|
node_output_type = node_type.get_output_type()
|
|
return NodeField(
|
|
alias=exposed_output.alias,
|
|
node_path=f"{node_id}.{exposed_output.node_path}",
|
|
field=exposed_output.field,
|
|
field_type=get_type_hints(node_output_type)[exposed_output.field],
|
|
)
|
|
|
|
|
|
def get_node_inputs(invocation: BaseInvocation, context: CliContext) -> dict[str, NodeField]:
|
|
"""Gets the inputs for the specified invocation from the context"""
|
|
node_type = type(invocation)
|
|
if node_type is not GraphInvocation:
|
|
return fields_from_type_hints(get_type_hints(node_type), invocation.id)
|
|
else:
|
|
graph: LibraryGraph = context.invoker.services.graph_library.get(context.graph_nodes[invocation.id])
|
|
return {e.alias: get_node_input_field(graph, e.alias, invocation.id) for e in graph.exposed_inputs}
|
|
|
|
|
|
def get_node_outputs(invocation: BaseInvocation, context: CliContext) -> dict[str, NodeField]:
|
|
"""Gets the outputs for the specified invocation from the context"""
|
|
node_type = type(invocation)
|
|
if node_type is not GraphInvocation:
|
|
return fields_from_type_hints(get_type_hints(node_type.get_output_type()), invocation.id)
|
|
else:
|
|
graph: LibraryGraph = context.invoker.services.graph_library.get(context.graph_nodes[invocation.id])
|
|
return {e.alias: get_node_output_field(graph, e.alias, invocation.id) for e in graph.exposed_outputs}
|
|
|
|
|
|
def generate_matching_edges(a: BaseInvocation, b: BaseInvocation, context: CliContext) -> list[Edge]:
|
|
"""Generates all possible edges between two invocations"""
|
|
afields = get_node_outputs(a, context)
|
|
bfields = get_node_inputs(b, context)
|
|
|
|
matching_fields = set(afields.keys()).intersection(bfields.keys())
|
|
|
|
# Remove invalid fields
|
|
invalid_fields = set(["type", "id"])
|
|
matching_fields = matching_fields.difference(invalid_fields)
|
|
|
|
# Validate types
|
|
matching_fields = [
|
|
f for f in matching_fields if are_connection_types_compatible(afields[f].field_type, bfields[f].field_type)
|
|
]
|
|
|
|
edges = [
|
|
Edge(
|
|
source=EdgeConnection(node_id=afields[alias].node_path, field=afields[alias].field),
|
|
destination=EdgeConnection(node_id=bfields[alias].node_path, field=bfields[alias].field),
|
|
)
|
|
for alias in matching_fields
|
|
]
|
|
return edges
|
|
|
|
|
|
class SessionError(Exception):
|
|
"""Raised when a session error has occurred"""
|
|
|
|
pass
|
|
|
|
|
|
def invoke_all(context: CliContext):
|
|
"""Runs all invocations in the specified session"""
|
|
context.invoker.invoke(context.session, invoke_all=True)
|
|
while not context.get_session().is_complete():
|
|
# Wait some time
|
|
time.sleep(0.1)
|
|
|
|
# Print any errors
|
|
if context.session.has_error():
|
|
for n in context.session.errors:
|
|
context.invoker.services.logger.error(
|
|
f"Error in node {n} (source node {context.session.prepared_source_mapping[n]}): {context.session.errors[n]}"
|
|
)
|
|
|
|
raise SessionError()
|
|
|
|
|
|
def invoke_cli():
|
|
logger.info(f"InvokeAI version {__version__}")
|
|
# get the optional list of invocations to execute on the command line
|
|
parser = config.get_parser()
|
|
parser.add_argument("commands", nargs="*")
|
|
invocation_commands = parser.parse_args().commands
|
|
|
|
# get the optional file to read commands from.
|
|
# Simplest is to use it for STDIN
|
|
if infile := config.from_file:
|
|
sys.stdin = open(infile, "r")
|
|
|
|
model_manager = ModelManagerService(config, logger)
|
|
|
|
events = EventServiceBase()
|
|
output_folder = config.output_path
|
|
|
|
# TODO: build a file/path manager?
|
|
if config.use_memory_db:
|
|
db_location = ":memory:"
|
|
else:
|
|
db_location = config.db_path
|
|
db_location.parent.mkdir(parents=True, exist_ok=True)
|
|
|
|
db_conn = sqlite3.connect(db_location, check_same_thread=False) # TODO: figure out a better threading solution
|
|
logger.info(f'InvokeAI database location is "{db_location}"')
|
|
|
|
graph_execution_manager = SqliteItemStorage[GraphExecutionState](conn=db_conn, table_name="graph_executions")
|
|
|
|
urls = LocalUrlService()
|
|
image_record_storage = SqliteImageRecordStorage(conn=db_conn)
|
|
image_file_storage = DiskImageFileStorage(f"{output_folder}/images")
|
|
names = SimpleNameService()
|
|
|
|
board_record_storage = SqliteBoardRecordStorage(conn=db_conn)
|
|
board_image_record_storage = SqliteBoardImageRecordStorage(conn=db_conn)
|
|
|
|
boards = BoardService(
|
|
services=BoardServiceDependencies(
|
|
board_image_record_storage=board_image_record_storage,
|
|
board_record_storage=board_record_storage,
|
|
image_record_storage=image_record_storage,
|
|
url=urls,
|
|
logger=logger,
|
|
)
|
|
)
|
|
|
|
board_images = BoardImagesService(
|
|
services=BoardImagesServiceDependencies(
|
|
board_image_record_storage=board_image_record_storage,
|
|
board_record_storage=board_record_storage,
|
|
image_record_storage=image_record_storage,
|
|
url=urls,
|
|
logger=logger,
|
|
)
|
|
)
|
|
|
|
images = ImageService(
|
|
services=ImageServiceDependencies(
|
|
board_image_record_storage=board_image_record_storage,
|
|
image_record_storage=image_record_storage,
|
|
image_file_storage=image_file_storage,
|
|
url=urls,
|
|
logger=logger,
|
|
names=names,
|
|
graph_execution_manager=graph_execution_manager,
|
|
)
|
|
)
|
|
|
|
batch_manager_storage = SqliteBatchProcessStorage(conn=db_conn)
|
|
batch_manager = BatchManager(batch_manager_storage)
|
|
|
|
services = InvocationServices(
|
|
model_manager=model_manager,
|
|
events=events,
|
|
latents=ForwardCacheLatentsStorage(DiskLatentsStorage(f"{output_folder}/latents")),
|
|
images=images,
|
|
boards=boards,
|
|
batch_manager=batch_manager,
|
|
board_images=board_images,
|
|
queue=MemoryInvocationQueue(),
|
|
graph_library=SqliteItemStorage[LibraryGraph](conn=db_conn, table_name="graphs"),
|
|
graph_execution_manager=graph_execution_manager,
|
|
processor=DefaultInvocationProcessor(),
|
|
performance_statistics=InvocationStatsService(graph_execution_manager),
|
|
logger=logger,
|
|
configuration=config,
|
|
)
|
|
|
|
system_graphs = create_system_graphs(services.graph_library)
|
|
system_graph_names = set([g.name for g in system_graphs])
|
|
set_autocompleter(services)
|
|
|
|
invoker = Invoker(services)
|
|
session: GraphExecutionState = invoker.create_execution_state()
|
|
parser = get_command_parser(services)
|
|
|
|
re_negid = re.compile("^-[0-9]+$")
|
|
|
|
# Uncomment to print out previous sessions at startup
|
|
# print(services.session_manager.list())
|
|
|
|
context = CliContext(invoker, session, parser)
|
|
set_autocompleter(services)
|
|
|
|
command_line_args_exist = len(invocation_commands) > 0
|
|
done = False
|
|
|
|
while not done:
|
|
try:
|
|
if command_line_args_exist:
|
|
cmd_input = invocation_commands.pop(0)
|
|
done = len(invocation_commands) == 0
|
|
else:
|
|
cmd_input = input("invoke> ")
|
|
except (KeyboardInterrupt, EOFError):
|
|
# Ctrl-c exits
|
|
break
|
|
|
|
try:
|
|
# Refresh the state of the session
|
|
# history = list(get_graph_execution_history(context.session))
|
|
history = list(reversed(context.nodes_added))
|
|
|
|
# Split the command for piping
|
|
cmds = cmd_input.split("|")
|
|
start_id = len(context.nodes_added)
|
|
current_id = start_id
|
|
new_invocations = list()
|
|
for cmd in cmds:
|
|
if cmd is None or cmd.strip() == "":
|
|
raise InvalidArgs("Empty command")
|
|
|
|
# Parse args to create invocation
|
|
args = vars(context.parser.parse_args(shlex.split(cmd.strip())))
|
|
|
|
# Override defaults
|
|
for field_name, field_default in context.defaults.items():
|
|
if field_name in args:
|
|
args[field_name] = field_default
|
|
|
|
# Parse invocation
|
|
command: CliCommand = None # type:ignore
|
|
system_graph: Optional[LibraryGraph] = None
|
|
if args["type"] in system_graph_names:
|
|
system_graph = next(filter(lambda g: g.name == args["type"], system_graphs))
|
|
invocation = GraphInvocation(graph=system_graph.graph, id=str(current_id))
|
|
for exposed_input in system_graph.exposed_inputs:
|
|
if exposed_input.alias in args:
|
|
node = invocation.graph.get_node(exposed_input.node_path)
|
|
field = exposed_input.field
|
|
setattr(node, field, args[exposed_input.alias])
|
|
command = CliCommand(command=invocation)
|
|
context.graph_nodes[invocation.id] = system_graph.id
|
|
else:
|
|
args["id"] = current_id
|
|
command = CliCommand(command=args)
|
|
|
|
if command is None:
|
|
continue
|
|
|
|
# Run any CLI commands immediately
|
|
if isinstance(command.command, BaseCommand):
|
|
# Invoke all current nodes to preserve operation order
|
|
invoke_all(context)
|
|
|
|
# Run the command
|
|
command.command.run(context)
|
|
continue
|
|
|
|
# TODO: handle linking with library graphs
|
|
# Pipe previous command output (if there was a previous command)
|
|
edges: list[Edge] = list()
|
|
if len(history) > 0 or current_id != start_id:
|
|
from_id = history[0] if current_id == start_id else str(current_id - 1)
|
|
from_node = (
|
|
next(filter(lambda n: n[0].id == from_id, new_invocations))[0]
|
|
if current_id != start_id
|
|
else context.session.graph.get_node(from_id)
|
|
)
|
|
matching_edges = generate_matching_edges(from_node, command.command, context)
|
|
edges.extend(matching_edges)
|
|
|
|
# Parse provided links
|
|
if "link_node" in args and args["link_node"]:
|
|
for link in args["link_node"]:
|
|
node_id = link
|
|
if re_negid.match(node_id):
|
|
node_id = str(current_id + int(node_id))
|
|
|
|
link_node = context.session.graph.get_node(node_id)
|
|
matching_edges = generate_matching_edges(link_node, command.command, context)
|
|
matching_destinations = [e.destination for e in matching_edges]
|
|
edges = [e for e in edges if e.destination not in matching_destinations]
|
|
edges.extend(matching_edges)
|
|
|
|
if "link" in args and args["link"]:
|
|
for link in args["link"]:
|
|
edges = [
|
|
e
|
|
for e in edges
|
|
if e.destination.node_id != command.command.id or e.destination.field != link[2]
|
|
]
|
|
|
|
node_id = link[0]
|
|
if re_negid.match(node_id):
|
|
node_id = str(current_id + int(node_id))
|
|
|
|
# TODO: handle missing input/output
|
|
node_output = get_node_outputs(context.session.graph.get_node(node_id), context)[link[1]]
|
|
node_input = get_node_inputs(command.command, context)[link[2]]
|
|
|
|
edges.append(
|
|
Edge(
|
|
source=EdgeConnection(node_id=node_output.node_path, field=node_output.field),
|
|
destination=EdgeConnection(node_id=node_input.node_path, field=node_input.field),
|
|
)
|
|
)
|
|
|
|
new_invocations.append((command.command, edges))
|
|
|
|
current_id = current_id + 1
|
|
|
|
# Add the node to the session
|
|
context.add_node(command.command)
|
|
for edge in edges:
|
|
print(edge)
|
|
context.add_edge(edge)
|
|
|
|
# Execute all remaining nodes
|
|
invoke_all(context)
|
|
|
|
except InvalidArgs:
|
|
invoker.services.logger.warning('Invalid command, use "help" to list commands')
|
|
continue
|
|
|
|
except ValidationError:
|
|
invoker.services.logger.warning('Invalid command arguments, run "<command> --help" for summary')
|
|
|
|
except SessionError:
|
|
# Start a new session
|
|
invoker.services.logger.warning("Session error: creating a new session")
|
|
context.reset()
|
|
|
|
except ExitCli:
|
|
break
|
|
|
|
except SystemExit:
|
|
continue
|
|
|
|
invoker.stop()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if config.version:
|
|
print(f"InvokeAI version {__version__}")
|
|
else:
|
|
invoke_cli()
|