mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
773 lines
30 KiB
Python
773 lines
30 KiB
Python
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
|
|
|
|
from contextlib import ExitStack
|
|
from typing import List, Literal, Optional, Union
|
|
|
|
import einops
|
|
import torch
|
|
from diffusers import ControlNetModel
|
|
from diffusers.image_processor import VaeImageProcessor
|
|
from diffusers.schedulers import SchedulerMixin as Scheduler
|
|
from pydantic import BaseModel, Field, validator
|
|
|
|
from invokeai.app.invocations.metadata import CoreMetadata
|
|
from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
|
from invokeai.backend.model_management.models.base import ModelType
|
|
|
|
from ...backend.model_management.lora import ModelPatcher
|
|
from ...backend.stable_diffusion import PipelineIntermediateState
|
|
from ...backend.stable_diffusion.diffusers_pipeline import (
|
|
ConditioningData, ControlNetData, StableDiffusionGeneratorPipeline,
|
|
image_resized_to_grid_as_tensor)
|
|
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import \
|
|
PostprocessingSettings
|
|
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
|
from ...backend.util.devices import choose_torch_device, torch_dtype, choose_precision
|
|
from ..models.image import ImageCategory, ImageField, ResourceOrigin
|
|
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
|
|
InvocationConfig, InvocationContext)
|
|
from .compel import ConditioningField
|
|
from .controlnet_image_processors import ControlField
|
|
from .image import ImageOutput
|
|
from .model import ModelInfo, UNetField, VaeField
|
|
from invokeai.app.util.controlnet_utils import prepare_control_image
|
|
|
|
from diffusers.models.attention_processor import (
|
|
AttnProcessor2_0,
|
|
LoRAAttnProcessor2_0,
|
|
LoRAXFormersAttnProcessor,
|
|
XFormersAttnProcessor,
|
|
)
|
|
|
|
|
|
DEFAULT_PRECISION = choose_precision(choose_torch_device())
|
|
|
|
|
|
class LatentsField(BaseModel):
|
|
"""A latents field used for passing latents between invocations"""
|
|
|
|
latents_name: Optional[str] = Field(
|
|
default=None, description="The name of the latents")
|
|
|
|
class Config:
|
|
schema_extra = {"required": ["latents_name"]}
|
|
|
|
|
|
class LatentsOutput(BaseInvocationOutput):
|
|
"""Base class for invocations that output latents"""
|
|
#fmt: off
|
|
type: Literal["latents_output"] = "latents_output"
|
|
|
|
# Inputs
|
|
latents: LatentsField = Field(default=None, description="The output latents")
|
|
width: int = Field(description="The width of the latents in pixels")
|
|
height: int = Field(description="The height of the latents in pixels")
|
|
#fmt: on
|
|
|
|
|
|
def build_latents_output(latents_name: str, latents: torch.Tensor):
|
|
return LatentsOutput(
|
|
latents=LatentsField(latents_name=latents_name),
|
|
width=latents.size()[3] * 8,
|
|
height=latents.size()[2] * 8,
|
|
)
|
|
|
|
|
|
SAMPLER_NAME_VALUES = Literal[
|
|
tuple(list(SCHEDULER_MAP.keys()))
|
|
]
|
|
|
|
|
|
def get_scheduler(
|
|
context: InvocationContext,
|
|
scheduler_info: ModelInfo,
|
|
scheduler_name: str,
|
|
) -> Scheduler:
|
|
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(
|
|
scheduler_name, SCHEDULER_MAP['ddim']
|
|
)
|
|
orig_scheduler_info = context.services.model_manager.get_model(
|
|
**scheduler_info.dict(), context=context,
|
|
)
|
|
with orig_scheduler_info as orig_scheduler:
|
|
scheduler_config = orig_scheduler.config
|
|
|
|
if "_backup" in scheduler_config:
|
|
scheduler_config = scheduler_config["_backup"]
|
|
scheduler_config = {
|
|
**scheduler_config,
|
|
**scheduler_extra_config,
|
|
"_backup": scheduler_config,
|
|
}
|
|
scheduler = scheduler_class.from_config(scheduler_config)
|
|
|
|
# hack copied over from generate.py
|
|
if not hasattr(scheduler, 'uses_inpainting_model'):
|
|
scheduler.uses_inpainting_model = lambda: False
|
|
return scheduler
|
|
|
|
|
|
# Text to image
|
|
class TextToLatentsInvocation(BaseInvocation):
|
|
"""Generates latents from conditionings."""
|
|
|
|
type: Literal["t2l"] = "t2l"
|
|
|
|
# Inputs
|
|
# fmt: off
|
|
positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation")
|
|
negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation")
|
|
noise: Optional[LatentsField] = Field(description="The noise to use")
|
|
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
|
|
cfg_scale: Union[float, List[float]] = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
|
|
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
|
|
unet: UNetField = Field(default=None, description="UNet submodel")
|
|
control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
|
|
#seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
|
|
#seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
|
|
# fmt: on
|
|
|
|
@validator("cfg_scale")
|
|
def ge_one(cls, v):
|
|
"""validate that all cfg_scale values are >= 1"""
|
|
if isinstance(v, list):
|
|
for i in v:
|
|
if i < 1:
|
|
raise ValueError('cfg_scale must be greater than 1')
|
|
else:
|
|
if v < 1:
|
|
raise ValueError('cfg_scale must be greater than 1')
|
|
return v
|
|
|
|
# Schema customisation
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "Text To Latents",
|
|
"tags": ["latents"],
|
|
"type_hints": {
|
|
"model": "model",
|
|
"control": "control",
|
|
# "cfg_scale": "float",
|
|
"cfg_scale": "number"
|
|
}
|
|
},
|
|
}
|
|
|
|
# TODO: pass this an emitter method or something? or a session for dispatching?
|
|
def dispatch_progress(
|
|
self,
|
|
context: InvocationContext,
|
|
source_node_id: str,
|
|
intermediate_state: PipelineIntermediateState,
|
|
) -> None:
|
|
stable_diffusion_step_callback(
|
|
context=context,
|
|
intermediate_state=intermediate_state,
|
|
node=self.dict(),
|
|
source_node_id=source_node_id,
|
|
)
|
|
|
|
def get_conditioning_data(
|
|
self,
|
|
context: InvocationContext,
|
|
scheduler,
|
|
unet,
|
|
) -> ConditioningData:
|
|
positive_cond_data = context.services.latents.get(self.positive_conditioning.conditioning_name)
|
|
c = positive_cond_data.conditionings[0].embeds.to(device=unet.device, dtype=unet.dtype)
|
|
extra_conditioning_info = positive_cond_data.conditionings[0].extra_conditioning
|
|
|
|
negative_cond_data = context.services.latents.get(self.negative_conditioning.conditioning_name)
|
|
uc = negative_cond_data.conditionings[0].embeds.to(device=unet.device, dtype=unet.dtype)
|
|
|
|
conditioning_data = ConditioningData(
|
|
unconditioned_embeddings=uc,
|
|
text_embeddings=c,
|
|
guidance_scale=self.cfg_scale,
|
|
extra=extra_conditioning_info,
|
|
postprocessing_settings=PostprocessingSettings(
|
|
threshold=0.0, # threshold,
|
|
warmup=0.2, # warmup,
|
|
h_symmetry_time_pct=None, # h_symmetry_time_pct,
|
|
v_symmetry_time_pct=None # v_symmetry_time_pct,
|
|
),
|
|
)
|
|
|
|
conditioning_data = conditioning_data.add_scheduler_args_if_applicable(
|
|
scheduler,
|
|
|
|
# for ddim scheduler
|
|
eta=0.0, # ddim_eta
|
|
|
|
# for ancestral and sde schedulers
|
|
generator=torch.Generator(device=unet.device).manual_seed(0),
|
|
)
|
|
return conditioning_data
|
|
|
|
def create_pipeline(
|
|
self,
|
|
unet,
|
|
scheduler,
|
|
) -> StableDiffusionGeneratorPipeline:
|
|
# TODO:
|
|
# configure_model_padding(
|
|
# unet,
|
|
# self.seamless,
|
|
# self.seamless_axes,
|
|
# )
|
|
|
|
class FakeVae:
|
|
class FakeVaeConfig:
|
|
def __init__(self):
|
|
self.block_out_channels = [0]
|
|
|
|
def __init__(self):
|
|
self.config = FakeVae.FakeVaeConfig()
|
|
|
|
return StableDiffusionGeneratorPipeline(
|
|
vae=FakeVae(), # TODO: oh...
|
|
text_encoder=None,
|
|
tokenizer=None,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
safety_checker=None,
|
|
feature_extractor=None,
|
|
requires_safety_checker=False,
|
|
precision="float16" if unet.dtype == torch.float16 else "float32",
|
|
)
|
|
|
|
def prep_control_data(
|
|
self,
|
|
context: InvocationContext,
|
|
# really only need model for dtype and device
|
|
model: StableDiffusionGeneratorPipeline,
|
|
control_input: List[ControlField],
|
|
latents_shape: List[int],
|
|
exit_stack: ExitStack,
|
|
do_classifier_free_guidance: bool = True,
|
|
) -> List[ControlNetData]:
|
|
|
|
# assuming fixed dimensional scaling of 8:1 for image:latents
|
|
control_height_resize = latents_shape[2] * 8
|
|
control_width_resize = latents_shape[3] * 8
|
|
if control_input is None:
|
|
control_list = None
|
|
elif isinstance(control_input, list) and len(control_input) == 0:
|
|
control_list = None
|
|
elif isinstance(control_input, ControlField):
|
|
control_list = [control_input]
|
|
elif isinstance(control_input, list) and len(control_input) > 0 and isinstance(control_input[0], ControlField):
|
|
control_list = control_input
|
|
else:
|
|
control_list = None
|
|
if (control_list is None):
|
|
control_data = None
|
|
# from above handling, any control that is not None should now be of type list[ControlField]
|
|
else:
|
|
# FIXME: add checks to skip entry if model or image is None
|
|
# and if weight is None, populate with default 1.0?
|
|
control_data = []
|
|
control_models = []
|
|
for control_info in control_list:
|
|
control_model = exit_stack.enter_context(
|
|
context.services.model_manager.get_model(
|
|
model_name=control_info.control_model.model_name,
|
|
model_type=ModelType.ControlNet,
|
|
base_model=control_info.control_model.base_model,
|
|
context=context,
|
|
)
|
|
)
|
|
|
|
control_models.append(control_model)
|
|
control_image_field = control_info.image
|
|
input_image = context.services.images.get_pil_image(
|
|
control_image_field.image_name
|
|
)
|
|
# self.image.image_type, self.image.image_name
|
|
# FIXME: still need to test with different widths, heights, devices, dtypes
|
|
# and add in batch_size, num_images_per_prompt?
|
|
# and do real check for classifier_free_guidance?
|
|
# prepare_control_image should return torch.Tensor of shape(batch_size, 3, height, width)
|
|
control_image = prepare_control_image(
|
|
image=input_image,
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
width=control_width_resize,
|
|
height=control_height_resize,
|
|
# batch_size=batch_size * num_images_per_prompt,
|
|
# num_images_per_prompt=num_images_per_prompt,
|
|
device=control_model.device,
|
|
dtype=control_model.dtype,
|
|
control_mode=control_info.control_mode,
|
|
resize_mode=control_info.resize_mode,
|
|
)
|
|
control_item = ControlNetData(
|
|
model=control_model,
|
|
image_tensor=control_image,
|
|
weight=control_info.control_weight,
|
|
begin_step_percent=control_info.begin_step_percent,
|
|
end_step_percent=control_info.end_step_percent,
|
|
control_mode=control_info.control_mode,
|
|
# any resizing needed should currently be happening in prepare_control_image(),
|
|
# but adding resize_mode to ControlNetData in case needed in the future
|
|
resize_mode=control_info.resize_mode,
|
|
)
|
|
control_data.append(control_item)
|
|
# MultiControlNetModel has been refactored out, just need list[ControlNetData]
|
|
return control_data
|
|
|
|
@torch.no_grad()
|
|
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
|
noise = context.services.latents.get(self.noise.latents_name)
|
|
|
|
# Get the source node id (we are invoking the prepared node)
|
|
graph_execution_state = context.services.graph_execution_manager.get(
|
|
context.graph_execution_state_id
|
|
)
|
|
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
|
|
|
|
def step_callback(state: PipelineIntermediateState):
|
|
self.dispatch_progress(context, source_node_id, state)
|
|
|
|
def _lora_loader():
|
|
for lora in self.unet.loras:
|
|
lora_info = context.services.model_manager.get_model(
|
|
**lora.dict(exclude={"weight"}), context=context,
|
|
)
|
|
yield (lora_info.context.model, lora.weight)
|
|
del lora_info
|
|
return
|
|
|
|
unet_info = context.services.model_manager.get_model(
|
|
**self.unet.unet.dict(), context=context,
|
|
)
|
|
with ExitStack() as exit_stack,\
|
|
ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),\
|
|
unet_info as unet:
|
|
|
|
noise = noise.to(device=unet.device, dtype=unet.dtype)
|
|
|
|
scheduler = get_scheduler(
|
|
context=context,
|
|
scheduler_info=self.unet.scheduler,
|
|
scheduler_name=self.scheduler,
|
|
)
|
|
|
|
pipeline = self.create_pipeline(unet, scheduler)
|
|
conditioning_data = self.get_conditioning_data(context, scheduler, unet)
|
|
|
|
control_data = self.prep_control_data(
|
|
model=pipeline, context=context, control_input=self.control,
|
|
latents_shape=noise.shape,
|
|
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
|
|
do_classifier_free_guidance=True,
|
|
exit_stack=exit_stack,
|
|
)
|
|
|
|
# TODO: Verify the noise is the right size
|
|
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
|
|
latents=torch.zeros_like(noise, dtype=torch_dtype(unet.device)),
|
|
noise=noise,
|
|
num_inference_steps=self.steps,
|
|
conditioning_data=conditioning_data,
|
|
control_data=control_data, # list[ControlNetData]
|
|
callback=step_callback,
|
|
)
|
|
|
|
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
|
result_latents = result_latents.to("cpu")
|
|
import uuid
|
|
name = f'{context.graph_execution_state_id}__{self.id}_{uuid.uuid4()}'
|
|
context.services.latents.save(name, result_latents)
|
|
return build_latents_output(latents_name=name, latents=result_latents)
|
|
|
|
|
|
class LatentsToLatentsInvocation(TextToLatentsInvocation):
|
|
"""Generates latents using latents as base image."""
|
|
|
|
type: Literal["l2l"] = "l2l"
|
|
|
|
# Inputs
|
|
latents: Optional[LatentsField] = Field(
|
|
description="The latents to use as a base image")
|
|
strength: float = Field(
|
|
default=0.7, ge=0, le=1,
|
|
description="The strength of the latents to use")
|
|
|
|
# Schema customisation
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "Latent To Latents",
|
|
"tags": ["latents"],
|
|
"type_hints": {
|
|
"model": "model",
|
|
"control": "control",
|
|
"cfg_scale": "number",
|
|
}
|
|
},
|
|
}
|
|
|
|
@torch.no_grad()
|
|
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
|
noise = context.services.latents.get(self.noise.latents_name)
|
|
latent = context.services.latents.get(self.latents.latents_name)
|
|
|
|
# Get the source node id (we are invoking the prepared node)
|
|
graph_execution_state = context.services.graph_execution_manager.get(
|
|
context.graph_execution_state_id
|
|
)
|
|
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
|
|
|
|
def step_callback(state: PipelineIntermediateState):
|
|
self.dispatch_progress(context, source_node_id, state)
|
|
|
|
def _lora_loader():
|
|
for lora in self.unet.loras:
|
|
lora_info = context.services.model_manager.get_model(
|
|
**lora.dict(exclude={"weight"}), context=context,
|
|
)
|
|
yield (lora_info.context.model, lora.weight)
|
|
del lora_info
|
|
return
|
|
|
|
unet_info = context.services.model_manager.get_model(
|
|
**self.unet.unet.dict(), context=context,
|
|
)
|
|
with ExitStack() as exit_stack,\
|
|
ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),\
|
|
unet_info as unet:
|
|
|
|
noise = noise.to(device=unet.device, dtype=unet.dtype)
|
|
latent = latent.to(device=unet.device, dtype=unet.dtype)
|
|
|
|
scheduler = get_scheduler(
|
|
context=context,
|
|
scheduler_info=self.unet.scheduler,
|
|
scheduler_name=self.scheduler,
|
|
)
|
|
|
|
pipeline = self.create_pipeline(unet, scheduler)
|
|
conditioning_data = self.get_conditioning_data(context, scheduler, unet)
|
|
|
|
control_data = self.prep_control_data(
|
|
model=pipeline, context=context, control_input=self.control,
|
|
latents_shape=noise.shape,
|
|
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
|
|
do_classifier_free_guidance=True,
|
|
exit_stack=exit_stack,
|
|
)
|
|
|
|
# TODO: Verify the noise is the right size
|
|
initial_latents = latent if self.strength < 1.0 else torch.zeros_like(
|
|
latent, device=unet.device, dtype=latent.dtype
|
|
)
|
|
|
|
timesteps, _ = pipeline.get_img2img_timesteps(
|
|
self.steps,
|
|
self.strength,
|
|
device=unet.device,
|
|
)
|
|
|
|
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
|
|
latents=initial_latents,
|
|
timesteps=timesteps,
|
|
noise=noise,
|
|
num_inference_steps=self.steps,
|
|
conditioning_data=conditioning_data,
|
|
control_data=control_data, # list[ControlNetData]
|
|
callback=step_callback
|
|
)
|
|
|
|
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
|
result_latents = result_latents.to("cpu")
|
|
torch.cuda.empty_cache()
|
|
|
|
name = f'{context.graph_execution_state_id}__{self.id}'
|
|
context.services.latents.save(name, result_latents)
|
|
return build_latents_output(latents_name=name, latents=result_latents)
|
|
|
|
|
|
# Latent to image
|
|
class LatentsToImageInvocation(BaseInvocation):
|
|
"""Generates an image from latents."""
|
|
|
|
type: Literal["l2i"] = "l2i"
|
|
|
|
# Inputs
|
|
latents: Optional[LatentsField] = Field(
|
|
description="The latents to generate an image from")
|
|
vae: VaeField = Field(default=None, description="Vae submodel")
|
|
tiled: bool = Field(
|
|
default=False,
|
|
description="Decode latents by overlaping tiles(less memory consumption)")
|
|
fp32: bool = Field(DEFAULT_PRECISION=='float32', description="Decode in full precision")
|
|
metadata: Optional[CoreMetadata] = Field(default=None, description="Optional core metadata to be written to the image")
|
|
|
|
# Schema customisation
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "Latents To Image",
|
|
"tags": ["latents", "image"],
|
|
},
|
|
}
|
|
|
|
@torch.no_grad()
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
latents = context.services.latents.get(self.latents.latents_name)
|
|
|
|
vae_info = context.services.model_manager.get_model(
|
|
**self.vae.vae.dict(), context=context,
|
|
)
|
|
|
|
with vae_info as vae:
|
|
latents = latents.to(vae.device)
|
|
if self.fp32:
|
|
vae.to(dtype=torch.float32)
|
|
|
|
use_torch_2_0_or_xformers = isinstance(
|
|
vae.decoder.mid_block.attentions[0].processor,
|
|
(
|
|
AttnProcessor2_0,
|
|
XFormersAttnProcessor,
|
|
LoRAXFormersAttnProcessor,
|
|
LoRAAttnProcessor2_0,
|
|
),
|
|
)
|
|
# if xformers or torch_2_0 is used attention block does not need
|
|
# to be in float32 which can save lots of memory
|
|
if use_torch_2_0_or_xformers:
|
|
vae.post_quant_conv.to(latents.dtype)
|
|
vae.decoder.conv_in.to(latents.dtype)
|
|
vae.decoder.mid_block.to(latents.dtype)
|
|
else:
|
|
latents = latents.float()
|
|
|
|
else:
|
|
vae.to(dtype=torch.float16)
|
|
latents = latents.half()
|
|
|
|
if self.tiled or context.services.configuration.tiled_decode:
|
|
vae.enable_tiling()
|
|
else:
|
|
vae.disable_tiling()
|
|
|
|
# clear memory as vae decode can request a lot
|
|
torch.cuda.empty_cache()
|
|
|
|
with torch.inference_mode():
|
|
# copied from diffusers pipeline
|
|
latents = latents / vae.config.scaling_factor
|
|
image = vae.decode(latents, return_dict=False)[0]
|
|
image = (image / 2 + 0.5).clamp(0, 1) # denormalize
|
|
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
|
np_image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
|
|
|
image = VaeImageProcessor.numpy_to_pil(np_image)[0]
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
image_dto = context.services.images.create(
|
|
image=image,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
metadata=self.metadata.dict() if self.metadata else None,
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
|
|
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear",
|
|
"bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
|
|
|
|
|
|
class ResizeLatentsInvocation(BaseInvocation):
|
|
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
|
|
|
|
type: Literal["lresize"] = "lresize"
|
|
|
|
# Inputs
|
|
latents: Optional[LatentsField] = Field(
|
|
description="The latents to resize")
|
|
width: Union[int, None] = Field(default=512,
|
|
ge=64, multiple_of=8, description="The width to resize to (px)")
|
|
height: Union[int, None] = Field(default=512,
|
|
ge=64, multiple_of=8, description="The height to resize to (px)")
|
|
mode: LATENTS_INTERPOLATION_MODE = Field(
|
|
default="bilinear", description="The interpolation mode")
|
|
antialias: bool = Field(
|
|
default=False,
|
|
description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
|
|
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "Resize Latents",
|
|
"tags": ["latents", "resize"]
|
|
},
|
|
}
|
|
|
|
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
|
latents = context.services.latents.get(self.latents.latents_name)
|
|
|
|
# TODO:
|
|
device=choose_torch_device()
|
|
|
|
resized_latents = torch.nn.functional.interpolate(
|
|
latents.to(device), size=(self.height // 8, self.width // 8),
|
|
mode=self.mode, antialias=self.antialias
|
|
if self.mode in ["bilinear", "bicubic"] else False,
|
|
)
|
|
|
|
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
|
resized_latents = resized_latents.to("cpu")
|
|
torch.cuda.empty_cache()
|
|
|
|
name = f"{context.graph_execution_state_id}__{self.id}"
|
|
# context.services.latents.set(name, resized_latents)
|
|
context.services.latents.save(name, resized_latents)
|
|
return build_latents_output(latents_name=name, latents=resized_latents)
|
|
|
|
|
|
class ScaleLatentsInvocation(BaseInvocation):
|
|
"""Scales latents by a given factor."""
|
|
|
|
type: Literal["lscale"] = "lscale"
|
|
|
|
# Inputs
|
|
latents: Optional[LatentsField] = Field(
|
|
description="The latents to scale")
|
|
scale_factor: float = Field(
|
|
gt=0, description="The factor by which to scale the latents")
|
|
mode: LATENTS_INTERPOLATION_MODE = Field(
|
|
default="bilinear", description="The interpolation mode")
|
|
antialias: bool = Field(
|
|
default=False,
|
|
description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
|
|
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "Scale Latents",
|
|
"tags": ["latents", "scale"]
|
|
},
|
|
}
|
|
|
|
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
|
latents = context.services.latents.get(self.latents.latents_name)
|
|
|
|
# TODO:
|
|
device=choose_torch_device()
|
|
|
|
# resizing
|
|
resized_latents = torch.nn.functional.interpolate(
|
|
latents.to(device), scale_factor=self.scale_factor, mode=self.mode,
|
|
antialias=self.antialias
|
|
if self.mode in ["bilinear", "bicubic"] else False,
|
|
)
|
|
|
|
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
|
resized_latents = resized_latents.to("cpu")
|
|
torch.cuda.empty_cache()
|
|
|
|
name = f"{context.graph_execution_state_id}__{self.id}"
|
|
# context.services.latents.set(name, resized_latents)
|
|
context.services.latents.save(name, resized_latents)
|
|
return build_latents_output(latents_name=name, latents=resized_latents)
|
|
|
|
|
|
class ImageToLatentsInvocation(BaseInvocation):
|
|
"""Encodes an image into latents."""
|
|
|
|
type: Literal["i2l"] = "i2l"
|
|
|
|
# Inputs
|
|
image: Optional[ImageField] = Field(description="The image to encode")
|
|
vae: VaeField = Field(default=None, description="Vae submodel")
|
|
tiled: bool = Field(
|
|
default=False,
|
|
description="Encode latents by overlaping tiles(less memory consumption)")
|
|
fp32: bool = Field(DEFAULT_PRECISION=='float32', description="Decode in full precision")
|
|
|
|
|
|
# Schema customisation
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "Image To Latents",
|
|
"tags": ["latents", "image"]
|
|
},
|
|
}
|
|
|
|
@torch.no_grad()
|
|
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
|
# image = context.services.images.get(
|
|
# self.image.image_type, self.image.image_name
|
|
# )
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
|
|
#vae_info = context.services.model_manager.get_model(**self.vae.vae.dict())
|
|
vae_info = context.services.model_manager.get_model(
|
|
**self.vae.vae.dict(), context=context,
|
|
)
|
|
|
|
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
|
|
if image_tensor.dim() == 3:
|
|
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
|
|
|
|
with vae_info as vae:
|
|
orig_dtype = vae.dtype
|
|
if self.fp32:
|
|
vae.to(dtype=torch.float32)
|
|
|
|
use_torch_2_0_or_xformers = isinstance(
|
|
vae.decoder.mid_block.attentions[0].processor,
|
|
(
|
|
AttnProcessor2_0,
|
|
XFormersAttnProcessor,
|
|
LoRAXFormersAttnProcessor,
|
|
LoRAAttnProcessor2_0,
|
|
),
|
|
)
|
|
# if xformers or torch_2_0 is used attention block does not need
|
|
# to be in float32 which can save lots of memory
|
|
if use_torch_2_0_or_xformers:
|
|
vae.post_quant_conv.to(orig_dtype)
|
|
vae.decoder.conv_in.to(orig_dtype)
|
|
vae.decoder.mid_block.to(orig_dtype)
|
|
#else:
|
|
# latents = latents.float()
|
|
|
|
else:
|
|
vae.to(dtype=torch.float16)
|
|
#latents = latents.half()
|
|
|
|
if self.tiled:
|
|
vae.enable_tiling()
|
|
else:
|
|
vae.disable_tiling()
|
|
|
|
# non_noised_latents_from_image
|
|
image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype)
|
|
with torch.inference_mode():
|
|
image_tensor_dist = vae.encode(image_tensor).latent_dist
|
|
latents = image_tensor_dist.sample().to(
|
|
dtype=vae.dtype
|
|
) # FIXME: uses torch.randn. make reproducible!
|
|
|
|
latents = vae.config.scaling_factor * latents
|
|
latents = latents.to(dtype=orig_dtype)
|
|
|
|
name = f"{context.graph_execution_state_id}__{self.id}"
|
|
latents = latents.to("cpu")
|
|
context.services.latents.save(name, latents)
|
|
return build_latents_output(latents_name=name, latents=latents)
|