mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
bde456f9fa
- make the warnings about patchmatch less redundant - only warn about being unable to load concepts from Hugging Face library once - do not crash when unable to load concepts from Hugging Face due to network connectivity issues
361 lines
13 KiB
Python
361 lines
13 KiB
Python
'''
|
|
ldm.invoke.generator.inpaint descends from ldm.invoke.generator
|
|
'''
|
|
|
|
import math
|
|
import torch
|
|
import torchvision.transforms as T
|
|
import numpy as np
|
|
import cv2 as cv
|
|
import PIL
|
|
from PIL import Image, ImageFilter, ImageOps, ImageChops
|
|
from skimage.exposure.histogram_matching import match_histograms
|
|
from einops import rearrange, repeat
|
|
from ldm.invoke.devices import choose_autocast
|
|
from ldm.invoke.generator.img2img import Img2Img
|
|
from ldm.models.diffusion.ddim import DDIMSampler
|
|
from ldm.models.diffusion.ksampler import KSampler
|
|
from ldm.invoke.generator.base import downsampling
|
|
from ldm.util import debug_image
|
|
from ldm.invoke.globals import Globals
|
|
|
|
infill_methods: list[str] = list()
|
|
|
|
if Globals.try_patchmatch:
|
|
from patchmatch import patch_match
|
|
if patch_match.patchmatch_available:
|
|
print('>> Patchmatch initialized')
|
|
infill_methods.append('patchmatch')
|
|
else:
|
|
print('>> Patchmatch not loaded (nonfatal)')
|
|
else:
|
|
print('>> Patchmatch loading disabled')
|
|
|
|
infill_methods.append('tile')
|
|
|
|
|
|
class Inpaint(Img2Img):
|
|
def __init__(self, model, precision):
|
|
self.init_latent = None
|
|
self.pil_image = None
|
|
self.pil_mask = None
|
|
self.mask_blur_radius = 0
|
|
super().__init__(model, precision)
|
|
|
|
# Outpaint support code
|
|
def get_tile_images(self, image: np.ndarray, width=8, height=8):
|
|
_nrows, _ncols, depth = image.shape
|
|
_strides = image.strides
|
|
|
|
nrows, _m = divmod(_nrows, height)
|
|
ncols, _n = divmod(_ncols, width)
|
|
if _m != 0 or _n != 0:
|
|
return None
|
|
|
|
return np.lib.stride_tricks.as_strided(
|
|
np.ravel(image),
|
|
shape=(nrows, ncols, height, width, depth),
|
|
strides=(height * _strides[0], width * _strides[1], *_strides),
|
|
writeable=False
|
|
)
|
|
|
|
def infill_patchmatch(self, im: Image.Image) -> Image:
|
|
if im.mode != 'RGBA':
|
|
return im
|
|
|
|
# Skip patchmatch if patchmatch isn't available
|
|
if not patch_match.patchmatch_available:
|
|
return im
|
|
|
|
# Patchmatch (note, we may want to expose patch_size? Increasing it significantly impacts performance though)
|
|
im_patched_np = patch_match.inpaint(im.convert('RGB'), ImageOps.invert(im.split()[-1]), patch_size = 3)
|
|
im_patched = Image.fromarray(im_patched_np, mode = 'RGB')
|
|
return im_patched
|
|
|
|
def tile_fill_missing(self, im: Image.Image, tile_size: int = 16, seed: int = None) -> Image:
|
|
# Only fill if there's an alpha layer
|
|
if im.mode != 'RGBA':
|
|
return im
|
|
|
|
a = np.asarray(im, dtype=np.uint8)
|
|
|
|
tile_size = (tile_size, tile_size)
|
|
|
|
# Get the image as tiles of a specified size
|
|
tiles = self.get_tile_images(a,*tile_size).copy()
|
|
|
|
# Get the mask as tiles
|
|
tiles_mask = tiles[:,:,:,:,3]
|
|
|
|
# Find any mask tiles with any fully transparent pixels (we will be replacing these later)
|
|
tmask_shape = tiles_mask.shape
|
|
tiles_mask = tiles_mask.reshape(math.prod(tiles_mask.shape))
|
|
n,ny = (math.prod(tmask_shape[0:2])), math.prod(tmask_shape[2:])
|
|
tiles_mask = (tiles_mask > 0)
|
|
tiles_mask = tiles_mask.reshape((n,ny)).all(axis = 1)
|
|
|
|
# Get RGB tiles in single array and filter by the mask
|
|
tshape = tiles.shape
|
|
tiles_all = tiles.reshape((math.prod(tiles.shape[0:2]), * tiles.shape[2:]))
|
|
filtered_tiles = tiles_all[tiles_mask]
|
|
|
|
if len(filtered_tiles) == 0:
|
|
return im
|
|
|
|
# Find all invalid tiles and replace with a random valid tile
|
|
replace_count = (tiles_mask == False).sum()
|
|
rng = np.random.default_rng(seed = seed)
|
|
tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[rng.choice(filtered_tiles.shape[0], replace_count),:,:,:]
|
|
|
|
# Convert back to an image
|
|
tiles_all = tiles_all.reshape(tshape)
|
|
tiles_all = tiles_all.swapaxes(1,2)
|
|
st = tiles_all.reshape((math.prod(tiles_all.shape[0:2]), math.prod(tiles_all.shape[2:4]), tiles_all.shape[4]))
|
|
si = Image.fromarray(st, mode='RGBA')
|
|
|
|
return si
|
|
|
|
|
|
def mask_edge(self, mask: Image, edge_size: int, edge_blur: int) -> Image:
|
|
npimg = np.asarray(mask, dtype=np.uint8)
|
|
|
|
# Detect any partially transparent regions
|
|
npgradient = np.uint8(255 * (1.0 - np.floor(np.abs(0.5 - np.float32(npimg) / 255.0) * 2.0)))
|
|
|
|
# Detect hard edges
|
|
npedge = cv.Canny(npimg, threshold1=100, threshold2=200)
|
|
|
|
# Combine
|
|
npmask = npgradient + npedge
|
|
|
|
# Expand
|
|
npmask = cv.dilate(npmask, np.ones((3,3), np.uint8), iterations = int(edge_size / 2))
|
|
|
|
new_mask = Image.fromarray(npmask)
|
|
|
|
if edge_blur > 0:
|
|
new_mask = new_mask.filter(ImageFilter.BoxBlur(edge_blur))
|
|
|
|
return ImageOps.invert(new_mask)
|
|
|
|
|
|
def seam_paint(self,
|
|
im: Image.Image,
|
|
seam_size: int,
|
|
seam_blur: int,
|
|
prompt,sampler,steps,cfg_scale,ddim_eta,
|
|
conditioning,strength,
|
|
noise,
|
|
step_callback
|
|
) -> Image.Image:
|
|
hard_mask = self.pil_image.split()[-1].copy()
|
|
mask = self.mask_edge(hard_mask, seam_size, seam_blur)
|
|
|
|
make_image = self.get_make_image(
|
|
prompt,
|
|
sampler,
|
|
steps,
|
|
cfg_scale,
|
|
ddim_eta,
|
|
conditioning,
|
|
init_image = im.copy().convert('RGBA'),
|
|
mask_image = mask.convert('RGB'), # Code currently requires an RGB mask
|
|
strength = strength,
|
|
mask_blur_radius = 0,
|
|
seam_size = 0,
|
|
step_callback = step_callback,
|
|
inpaint_width = im.width,
|
|
inpaint_height = im.height
|
|
)
|
|
|
|
seam_noise = self.get_noise(im.width, im.height)
|
|
|
|
result = make_image(seam_noise)
|
|
|
|
return result
|
|
|
|
|
|
@torch.no_grad()
|
|
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
|
|
conditioning,init_image,mask_image,strength,
|
|
mask_blur_radius: int = 8,
|
|
# Seam settings - when 0, doesn't fill seam
|
|
seam_size: int = 0,
|
|
seam_blur: int = 0,
|
|
seam_strength: float = 0.7,
|
|
seam_steps: int = 10,
|
|
tile_size: int = 32,
|
|
step_callback=None,
|
|
inpaint_replace=False, enable_image_debugging=False,
|
|
infill_method = infill_methods[0], # The infill method to use
|
|
inpaint_width=None,
|
|
inpaint_height=None,
|
|
**kwargs):
|
|
"""
|
|
Returns a function returning an image derived from the prompt and
|
|
the initial image + mask. Return value depends on the seed at
|
|
the time you call it. kwargs are 'init_latent' and 'strength'
|
|
"""
|
|
|
|
self.enable_image_debugging = enable_image_debugging
|
|
|
|
self.inpaint_width = inpaint_width
|
|
self.inpaint_height = inpaint_height
|
|
|
|
if isinstance(init_image, PIL.Image.Image):
|
|
self.pil_image = init_image.copy()
|
|
|
|
# Do infill
|
|
if infill_method == 'patchmatch' and patch_match.patchmatch_available:
|
|
init_filled = self.infill_patchmatch(self.pil_image.copy())
|
|
else: # if infill_method == 'tile': # Only two methods right now, so always use 'tile' if not patchmatch
|
|
init_filled = self.tile_fill_missing(
|
|
self.pil_image.copy(),
|
|
seed = self.seed,
|
|
tile_size = tile_size
|
|
)
|
|
init_filled.paste(init_image, (0,0), init_image.split()[-1])
|
|
|
|
# Resize if requested for inpainting
|
|
if inpaint_width and inpaint_height:
|
|
init_filled = init_filled.resize((inpaint_width, inpaint_height))
|
|
|
|
debug_image(init_filled, "init_filled", debug_status=self.enable_image_debugging)
|
|
|
|
# Create init tensor
|
|
init_image = self._image_to_tensor(init_filled.convert('RGB'))
|
|
|
|
if isinstance(mask_image, PIL.Image.Image):
|
|
self.pil_mask = mask_image.copy()
|
|
debug_image(mask_image, "mask_image BEFORE multiply with pil_image", debug_status=self.enable_image_debugging)
|
|
|
|
mask_image = ImageChops.multiply(mask_image, self.pil_image.split()[-1].convert('RGB'))
|
|
self.pil_mask = mask_image
|
|
|
|
# Resize if requested for inpainting
|
|
if inpaint_width and inpaint_height:
|
|
mask_image = mask_image.resize((inpaint_width, inpaint_height))
|
|
|
|
debug_image(mask_image, "mask_image AFTER multiply with pil_image", debug_status=self.enable_image_debugging)
|
|
mask_image = mask_image.resize(
|
|
(
|
|
mask_image.width // downsampling,
|
|
mask_image.height // downsampling
|
|
),
|
|
resample=Image.Resampling.NEAREST
|
|
)
|
|
mask_image = self._image_to_tensor(mask_image,normalize=False)
|
|
|
|
self.mask_blur_radius = mask_blur_radius
|
|
|
|
# klms samplers not supported yet, so ignore previous sampler
|
|
if isinstance(sampler,KSampler):
|
|
print(
|
|
f">> Using recommended DDIM sampler for inpainting."
|
|
)
|
|
sampler = DDIMSampler(self.model, device=self.model.device)
|
|
|
|
sampler.make_schedule(
|
|
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
|
|
)
|
|
|
|
mask_image = mask_image[0][0].unsqueeze(0).repeat(4,1,1).unsqueeze(0)
|
|
mask_image = repeat(mask_image, '1 ... -> b ...', b=1)
|
|
|
|
scope = choose_autocast(self.precision)
|
|
with scope(self.model.device.type):
|
|
self.init_latent = self.model.get_first_stage_encoding(
|
|
self.model.encode_first_stage(init_image)
|
|
) # move to latent space
|
|
|
|
t_enc = int(strength * steps)
|
|
# todo: support cross-attention control
|
|
uc, c, _ = conditioning
|
|
|
|
print(f">> target t_enc is {t_enc} steps")
|
|
|
|
@torch.no_grad()
|
|
def make_image(x_T):
|
|
# encode (scaled latent)
|
|
z_enc = sampler.stochastic_encode(
|
|
self.init_latent,
|
|
torch.tensor([t_enc]).to(self.model.device),
|
|
noise=x_T
|
|
)
|
|
|
|
# to replace masked area with latent noise, weighted by inpaint_replace strength
|
|
if inpaint_replace > 0.0:
|
|
print(f'>> inpaint will replace what was under the mask with a strength of {inpaint_replace}')
|
|
l_noise = self.get_noise(kwargs['width'],kwargs['height'])
|
|
inverted_mask = 1.0-mask_image # there will be 1s where the mask is
|
|
masked_region = (1.0-inpaint_replace) * inverted_mask * z_enc + inpaint_replace * inverted_mask * l_noise
|
|
z_enc = z_enc * mask_image + masked_region
|
|
|
|
# decode it
|
|
samples = sampler.decode(
|
|
z_enc,
|
|
c,
|
|
t_enc,
|
|
img_callback = step_callback,
|
|
unconditional_guidance_scale = cfg_scale,
|
|
unconditional_conditioning = uc,
|
|
mask = mask_image,
|
|
init_latent = self.init_latent
|
|
)
|
|
|
|
result = self.sample_to_image(samples)
|
|
|
|
# Seam paint if this is our first pass (seam_size set to 0 during seam painting)
|
|
if seam_size > 0:
|
|
old_image = self.pil_image or init_image
|
|
old_mask = self.pil_mask or mask_image
|
|
|
|
result = self.seam_paint(
|
|
result,
|
|
seam_size,
|
|
seam_blur,
|
|
prompt,
|
|
sampler,
|
|
seam_steps,
|
|
cfg_scale,
|
|
ddim_eta,
|
|
conditioning,
|
|
seam_strength,
|
|
x_T,
|
|
step_callback)
|
|
|
|
# Restore original settings
|
|
self.get_make_image(prompt,sampler,steps,cfg_scale,ddim_eta,
|
|
conditioning,
|
|
old_image,
|
|
old_mask,
|
|
strength,
|
|
mask_blur_radius, seam_size, seam_blur, seam_strength,
|
|
seam_steps, tile_size, step_callback,
|
|
inpaint_replace, enable_image_debugging,
|
|
inpaint_width = inpaint_width,
|
|
inpaint_height = inpaint_height,
|
|
infill_method = infill_method,
|
|
**kwargs)
|
|
|
|
return result
|
|
|
|
return make_image
|
|
|
|
|
|
def sample_to_image(self, samples)->Image.Image:
|
|
gen_result = super().sample_to_image(samples).convert('RGB')
|
|
debug_image(gen_result, "gen_result", debug_status=self.enable_image_debugging)
|
|
|
|
# Resize if necessary
|
|
if self.inpaint_width and self.inpaint_height:
|
|
gen_result = gen_result.resize(self.pil_image.size)
|
|
|
|
if self.pil_image is None or self.pil_mask is None:
|
|
return gen_result
|
|
|
|
corrected_result = super().repaste_and_color_correct(gen_result, self.pil_image, self.pil_mask, self.mask_blur_radius)
|
|
debug_image(corrected_result, "corrected_result", debug_status=self.enable_image_debugging)
|
|
|
|
return corrected_result
|