mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
153 lines
5.0 KiB
Python
153 lines
5.0 KiB
Python
from invokeai.app.shared.fields import FieldDescriptions
|
|
from invokeai.backend.model_manager import SubModelType
|
|
|
|
from .baseinvocation import (
|
|
BaseInvocation,
|
|
BaseInvocationOutput,
|
|
Input,
|
|
InputField,
|
|
InvocationContext,
|
|
OutputField,
|
|
UIType,
|
|
invocation,
|
|
invocation_output,
|
|
)
|
|
from .model import ClipField, MainModelField, ModelInfo, UNetField, VaeField
|
|
|
|
|
|
@invocation_output("sdxl_model_loader_output")
|
|
class SDXLModelLoaderOutput(BaseInvocationOutput):
|
|
"""SDXL base model loader output"""
|
|
|
|
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
|
|
clip: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP 1")
|
|
clip2: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP 2")
|
|
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
|
|
|
|
|
|
@invocation_output("sdxl_refiner_model_loader_output")
|
|
class SDXLRefinerModelLoaderOutput(BaseInvocationOutput):
|
|
"""SDXL refiner model loader output"""
|
|
|
|
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
|
|
clip2: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP 2")
|
|
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
|
|
|
|
|
|
@invocation("sdxl_model_loader", title="SDXL Main Model", tags=["model", "sdxl"], category="model", version="1.0.0")
|
|
class SDXLModelLoaderInvocation(BaseInvocation):
|
|
"""Loads an sdxl base model, outputting its submodels."""
|
|
|
|
model: MainModelField = InputField(
|
|
description=FieldDescriptions.sdxl_main_model, input=Input.Direct, ui_type=UIType.SDXLMainModel
|
|
)
|
|
# TODO: precision?
|
|
|
|
def invoke(self, context: InvocationContext) -> SDXLModelLoaderOutput:
|
|
model_key = self.model.key
|
|
|
|
# TODO: not found exceptions
|
|
if not context.services.model_manager.store.exists(model_key):
|
|
raise Exception(f"Unknown model: {model_key}")
|
|
|
|
return SDXLModelLoaderOutput(
|
|
unet=UNetField(
|
|
unet=ModelInfo(
|
|
key=model_key,
|
|
submodel_type=SubModelType.UNet,
|
|
),
|
|
scheduler=ModelInfo(
|
|
key=model_key,
|
|
submodel_type=SubModelType.Scheduler,
|
|
),
|
|
loras=[],
|
|
),
|
|
clip=ClipField(
|
|
tokenizer=ModelInfo(
|
|
key=model_key,
|
|
submodel_type=SubModelType.Tokenizer,
|
|
),
|
|
text_encoder=ModelInfo(
|
|
key=model_key,
|
|
submodel_type=SubModelType.TextEncoder,
|
|
),
|
|
loras=[],
|
|
skipped_layers=0,
|
|
),
|
|
clip2=ClipField(
|
|
tokenizer=ModelInfo(
|
|
key=model_key,
|
|
submodel_type=SubModelType.Tokenizer2,
|
|
),
|
|
text_encoder=ModelInfo(
|
|
key=model_key,
|
|
submodel_type=SubModelType.TextEncoder2,
|
|
),
|
|
loras=[],
|
|
skipped_layers=0,
|
|
),
|
|
vae=VaeField(
|
|
vae=ModelInfo(
|
|
key=model_key,
|
|
submodel_type=SubModelType.Vae,
|
|
),
|
|
),
|
|
)
|
|
|
|
|
|
@invocation(
|
|
"sdxl_refiner_model_loader",
|
|
title="SDXL Refiner Model",
|
|
tags=["model", "sdxl", "refiner"],
|
|
category="model",
|
|
version="1.0.0",
|
|
)
|
|
class SDXLRefinerModelLoaderInvocation(BaseInvocation):
|
|
"""Loads an sdxl refiner model, outputting its submodels."""
|
|
|
|
model: MainModelField = InputField(
|
|
description=FieldDescriptions.sdxl_refiner_model,
|
|
input=Input.Direct,
|
|
ui_type=UIType.SDXLRefinerModel,
|
|
)
|
|
# TODO: precision?
|
|
|
|
def invoke(self, context: InvocationContext) -> SDXLRefinerModelLoaderOutput:
|
|
model_key = self.model.key
|
|
|
|
# TODO: not found exceptions
|
|
if not context.services.model_manager.store.exists(model_key):
|
|
raise Exception(f"Unknown model: {model_key}")
|
|
|
|
return SDXLRefinerModelLoaderOutput(
|
|
unet=UNetField(
|
|
unet=ModelInfo(
|
|
key=model_key,
|
|
submodel_type=SubModelType.UNet,
|
|
),
|
|
scheduler=ModelInfo(
|
|
key=model_key,
|
|
submodel_type=SubModelType.Scheduler,
|
|
),
|
|
loras=[],
|
|
),
|
|
clip2=ClipField(
|
|
tokenizer=ModelInfo(
|
|
key=model_key,
|
|
submodel_type=SubModelType.Tokenizer2,
|
|
),
|
|
text_encoder=ModelInfo(
|
|
key=model_key,
|
|
submodel_type=SubModelType.TextEncoder2,
|
|
),
|
|
loras=[],
|
|
skipped_layers=0,
|
|
),
|
|
vae=VaeField(
|
|
vae=ModelInfo(
|
|
key=model_key,
|
|
submodel_type=SubModelType.Vae,
|
|
),
|
|
),
|
|
)
|