mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
b8212e4dea
Also tighten up the typing of `device` attributes in general.
55 lines
1.9 KiB
Python
55 lines
1.9 KiB
Python
from __future__ import annotations
|
|
|
|
from contextlib import nullcontext
|
|
|
|
import torch
|
|
from torch import autocast
|
|
|
|
from ldm.invoke.globals import Globals
|
|
|
|
CPU_DEVICE = torch.device("cpu")
|
|
|
|
def choose_torch_device() -> torch.device:
|
|
'''Convenience routine for guessing which GPU device to run model on'''
|
|
if Globals.always_use_cpu:
|
|
return CPU_DEVICE
|
|
if torch.cuda.is_available():
|
|
return torch.device('cuda')
|
|
if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
|
|
return torch.device('mps')
|
|
return CPU_DEVICE
|
|
|
|
def choose_precision(device: torch.device) -> str:
|
|
'''Returns an appropriate precision for the given torch device'''
|
|
if device.type == 'cuda':
|
|
device_name = torch.cuda.get_device_name(device)
|
|
if not ('GeForce GTX 1660' in device_name or 'GeForce GTX 1650' in device_name):
|
|
return 'float16'
|
|
return 'float32'
|
|
|
|
def torch_dtype(device: torch.device) -> torch.dtype:
|
|
if Globals.full_precision:
|
|
return torch.float32
|
|
if choose_precision(device) == 'float16':
|
|
return torch.float16
|
|
else:
|
|
return torch.float32
|
|
|
|
def choose_autocast(precision):
|
|
'''Returns an autocast context or nullcontext for the given precision string'''
|
|
# float16 currently requires autocast to avoid errors like:
|
|
# 'expected scalar type Half but found Float'
|
|
if precision == 'autocast' or precision == 'float16':
|
|
return autocast
|
|
return nullcontext
|
|
|
|
def normalize_device(device: str | torch.device) -> torch.device:
|
|
"""Ensure device has a device index defined, if appropriate."""
|
|
device = torch.device(device)
|
|
if device.index is None:
|
|
# cuda might be the only torch backend that currently uses the device index?
|
|
# I don't see anything like `current_device` for cpu or mps.
|
|
if device.type == 'cuda':
|
|
device = torch.device(device.type, torch.cuda.current_device())
|
|
return device
|