InvokeAI/invokeai/backend/model_management/models/controlnet.py
2023-07-28 09:46:44 -04:00

160 lines
4.9 KiB
Python

import os
import torch
from enum import Enum
from pathlib import Path
from typing import Optional, Literal
from .base import (
ModelBase,
ModelConfigBase,
BaseModelType,
ModelType,
SubModelType,
EmptyConfigLoader,
calc_model_size_by_fs,
calc_model_size_by_data,
classproperty,
InvalidModelException,
ModelNotFoundException,
)
from invokeai.app.services.config import InvokeAIAppConfig
class ControlNetModelFormat(str, Enum):
Checkpoint = "checkpoint"
Diffusers = "diffusers"
class ControlNetModel(ModelBase):
# model_class: Type
# model_size: int
class DiffusersConfig(ModelConfigBase):
model_format: Literal[ControlNetModelFormat.Diffusers]
class CheckpointConfig(ModelConfigBase):
model_format: Literal[ControlNetModelFormat.Checkpoint]
config: str
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert model_type == ModelType.ControlNet
super().__init__(model_path, base_model, model_type)
try:
config = EmptyConfigLoader.load_config(self.model_path, config_name="config.json")
# config = json.loads(os.path.join(self.model_path, "config.json"))
except:
raise Exception("Invalid controlnet model! (config.json not found or invalid)")
model_class_name = config.get("_class_name", None)
if model_class_name not in {"ControlNetModel"}:
raise Exception(f"Invalid ControlNet model! Unknown _class_name: {model_class_name}")
try:
self.model_class = self._hf_definition_to_type(["diffusers", model_class_name])
self.model_size = calc_model_size_by_fs(self.model_path)
except:
raise Exception("Invalid ControlNet model!")
def get_size(self, child_type: Optional[SubModelType] = None):
if child_type is not None:
raise Exception("There is no child models in controlnet model")
return self.model_size
def get_model(
self,
torch_dtype: Optional[torch.dtype],
child_type: Optional[SubModelType] = None,
):
if child_type is not None:
raise Exception("There is no child models in controlnet model")
model = None
for variant in ["fp16", None]:
try:
model = self.model_class.from_pretrained(
self.model_path,
torch_dtype=torch_dtype,
variant=variant,
)
break
except:
pass
if not model:
raise ModelNotFoundException()
# calc more accurate size
self.model_size = calc_model_size_by_data(model)
return model
@classproperty
def save_to_config(cls) -> bool:
return False
@classmethod
def detect_format(cls, path: str):
if not os.path.exists(path):
raise ModelNotFoundException()
if os.path.isdir(path):
if os.path.exists(os.path.join(path, "config.json")):
return ControlNetModelFormat.Diffusers
if os.path.isfile(path):
if any([path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt", "pth"]]):
return ControlNetModelFormat.Checkpoint
raise InvalidModelException(f"Not a valid model: {path}")
@classmethod
def convert_if_required(
cls,
model_path: str,
output_path: str,
config: ModelConfigBase,
base_model: BaseModelType,
) -> str:
if cls.detect_format(model_path) == ControlNetModelFormat.Checkpoint:
return _convert_controlnet_ckpt_and_cache(
model_path=model_path,
model_config=config.config,
output_path=output_path,
base_model=base_model,
)
else:
return model_path
@classmethod
def _convert_controlnet_ckpt_and_cache(
cls,
model_path: str,
output_path: str,
base_model: BaseModelType,
model_config: ControlNetModel.CheckpointConfig,
) -> str:
"""
Convert the controlnet from checkpoint format to diffusers format,
cache it to disk, and return Path to converted
file. If already on disk then just returns Path.
"""
app_config = InvokeAIAppConfig.get_config()
weights = app_config.root_path / model_path
output_path = Path(output_path)
# return cached version if it exists
if output_path.exists():
return output_path
# to avoid circular import errors
from ..convert_ckpt_to_diffusers import convert_controlnet_to_diffusers
convert_controlnet_to_diffusers(
weights,
output_path,
original_config_file=app_config.root_path / model_config,
image_size=512,
scan_needed=True,
from_safetensors=weights.suffix == ".safetensors",
)
return output_path