mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
1091 lines
44 KiB
Python
1091 lines
44 KiB
Python
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
|
|
|
|
# Derived from source code carrying the following copyrights
|
|
# Copyright (c) 2022 Machine Vision and Learning Group, LMU Munich
|
|
# Copyright (c) 2022 Robin Rombach and Patrick Esser and contributors
|
|
|
|
import torch
|
|
import numpy as np
|
|
import random
|
|
import os
|
|
import time
|
|
import re
|
|
import sys
|
|
import traceback
|
|
import transformers
|
|
import io
|
|
import hashlib
|
|
import cv2
|
|
import skimage
|
|
|
|
from omegaconf import OmegaConf
|
|
from ldm.dream.generator.base import downsampling
|
|
from PIL import Image, ImageOps
|
|
from torch import nn
|
|
from pytorch_lightning import seed_everything, logging
|
|
|
|
from ldm.util import instantiate_from_config
|
|
from ldm.models.diffusion.ddim import DDIMSampler
|
|
from ldm.models.diffusion.plms import PLMSSampler
|
|
from ldm.models.diffusion.ksampler import KSampler
|
|
from ldm.dream.pngwriter import PngWriter
|
|
from ldm.dream.args import metadata_from_png
|
|
from ldm.dream.image_util import InitImageResizer
|
|
from ldm.dream.devices import choose_torch_device, choose_precision
|
|
from ldm.dream.conditioning import get_uc_and_c
|
|
|
|
def fix_func(orig):
|
|
if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
|
|
def new_func(*args, **kw):
|
|
device = kw.get("device", "mps")
|
|
kw["device"]="cpu"
|
|
return orig(*args, **kw).to(device)
|
|
return new_func
|
|
return orig
|
|
|
|
torch.rand = fix_func(torch.rand)
|
|
torch.rand_like = fix_func(torch.rand_like)
|
|
torch.randn = fix_func(torch.randn)
|
|
torch.randn_like = fix_func(torch.randn_like)
|
|
torch.randint = fix_func(torch.randint)
|
|
torch.randint_like = fix_func(torch.randint_like)
|
|
torch.bernoulli = fix_func(torch.bernoulli)
|
|
torch.multinomial = fix_func(torch.multinomial)
|
|
|
|
def fix_func(orig):
|
|
if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
|
|
def new_func(*args, **kw):
|
|
device = kw.get("device", "mps")
|
|
kw["device"]="cpu"
|
|
return orig(*args, **kw).to(device)
|
|
return new_func
|
|
return orig
|
|
|
|
torch.rand = fix_func(torch.rand)
|
|
torch.rand_like = fix_func(torch.rand_like)
|
|
torch.randn = fix_func(torch.randn)
|
|
torch.randn_like = fix_func(torch.randn_like)
|
|
torch.randint = fix_func(torch.randint)
|
|
torch.randint_like = fix_func(torch.randint_like)
|
|
torch.bernoulli = fix_func(torch.bernoulli)
|
|
torch.multinomial = fix_func(torch.multinomial)
|
|
|
|
def fix_func(orig):
|
|
if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
|
|
def new_func(*args, **kw):
|
|
device = kw.get("device", "mps")
|
|
kw["device"]="cpu"
|
|
return orig(*args, **kw).to(device)
|
|
return new_func
|
|
return orig
|
|
|
|
torch.rand = fix_func(torch.rand)
|
|
torch.rand_like = fix_func(torch.rand_like)
|
|
torch.randn = fix_func(torch.randn)
|
|
torch.randn_like = fix_func(torch.randn_like)
|
|
torch.randint = fix_func(torch.randint)
|
|
torch.randint_like = fix_func(torch.randint_like)
|
|
torch.bernoulli = fix_func(torch.bernoulli)
|
|
torch.multinomial = fix_func(torch.multinomial)
|
|
|
|
"""Simplified text to image API for stable diffusion/latent diffusion
|
|
|
|
Example Usage:
|
|
|
|
from ldm.generate import Generate
|
|
|
|
# Create an object with default values
|
|
gr = Generate('stable-diffusion-1.4')
|
|
|
|
# do the slow model initialization
|
|
gr.load_model()
|
|
|
|
# Do the fast inference & image generation. Any options passed here
|
|
# override the default values assigned during class initialization
|
|
# Will call load_model() if the model was not previously loaded and so
|
|
# may be slow at first.
|
|
# The method returns a list of images. Each row of the list is a sub-list of [filename,seed]
|
|
results = gr.prompt2png(prompt = "an astronaut riding a horse",
|
|
outdir = "./outputs/samples",
|
|
iterations = 3)
|
|
|
|
for row in results:
|
|
print(f'filename={row[0]}')
|
|
print(f'seed ={row[1]}')
|
|
|
|
# Same thing, but using an initial image.
|
|
results = gr.prompt2png(prompt = "an astronaut riding a horse",
|
|
outdir = "./outputs/,
|
|
iterations = 3,
|
|
init_img = "./sketches/horse+rider.png")
|
|
|
|
for row in results:
|
|
print(f'filename={row[0]}')
|
|
print(f'seed ={row[1]}')
|
|
|
|
# Same thing, but we return a series of Image objects, which lets you manipulate them,
|
|
# combine them, and save them under arbitrary names
|
|
|
|
results = gr.prompt2image(prompt = "an astronaut riding a horse"
|
|
outdir = "./outputs/")
|
|
for row in results:
|
|
im = row[0]
|
|
seed = row[1]
|
|
im.save(f'./outputs/samples/an_astronaut_riding_a_horse-{seed}.png')
|
|
im.thumbnail(100,100).save('./outputs/samples/astronaut_thumb.jpg')
|
|
|
|
Note that the old txt2img() and img2img() calls are deprecated but will
|
|
still work.
|
|
|
|
The full list of arguments to Generate() are:
|
|
gr = Generate(
|
|
# these values are set once and shouldn't be changed
|
|
conf = path to configuration file ('configs/models.yaml')
|
|
model = symbolic name of the model in the configuration file
|
|
precision = float precision to be used
|
|
|
|
# this value is sticky and maintained between generation calls
|
|
sampler_name = ['ddim', 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a', 'k_euler', 'k_heun', 'k_lms', 'plms'] // k_lms
|
|
|
|
# these are deprecated - use conf and model instead
|
|
weights = path to model weights ('models/ldm/stable-diffusion-v1/model.ckpt')
|
|
config = path to model configuraiton ('configs/stable-diffusion/v1-inference.yaml')
|
|
)
|
|
|
|
"""
|
|
|
|
|
|
class Generate:
|
|
"""Generate class
|
|
Stores default values for multiple configuration items
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model = 'stable-diffusion-1.4',
|
|
conf = 'configs/models.yaml',
|
|
embedding_path = None,
|
|
sampler_name = 'k_lms',
|
|
ddim_eta = 0.0, # deterministic
|
|
full_precision = False,
|
|
precision = 'auto',
|
|
# these are deprecated; if present they override values in the conf file
|
|
weights = None,
|
|
config = None,
|
|
gfpgan=None,
|
|
codeformer=None,
|
|
esrgan=None
|
|
):
|
|
models = OmegaConf.load(conf)
|
|
mconfig = models[model]
|
|
self.weights = mconfig.weights if weights is None else weights
|
|
self.config = mconfig.config if config is None else config
|
|
self.height = mconfig.height
|
|
self.width = mconfig.width
|
|
self.iterations = 1
|
|
self.steps = 50
|
|
self.cfg_scale = 7.5
|
|
self.sampler_name = sampler_name
|
|
self.ddim_eta = 0.0 # same seed always produces same image
|
|
self.precision = precision
|
|
self.strength = 0.75
|
|
self.seamless = False
|
|
self.embedding_path = embedding_path
|
|
self.model = None # empty for now
|
|
self.sampler = None
|
|
self.device = None
|
|
self.session_peakmem = None
|
|
self.generators = {}
|
|
self.base_generator = None
|
|
self.seed = None
|
|
self.gfpgan = gfpgan
|
|
self.codeformer = codeformer
|
|
self.esrgan = esrgan
|
|
|
|
# Note that in previous versions, there was an option to pass the
|
|
# device to Generate(). However the device was then ignored, so
|
|
# it wasn't actually doing anything. This logic could be reinstated.
|
|
device_type = choose_torch_device()
|
|
self.device = torch.device(device_type)
|
|
if full_precision:
|
|
if self.precision != 'auto':
|
|
raise ValueError('Remove --full_precision / -F if using --precision')
|
|
print('Please remove deprecated --full_precision / -F')
|
|
print('If auto config does not work you can use --precision=float32')
|
|
self.precision = 'float32'
|
|
if self.precision == 'auto':
|
|
self.precision = choose_precision(self.device)
|
|
|
|
# for VRAM usage statistics
|
|
self.session_peakmem = torch.cuda.max_memory_allocated() if self._has_cuda else None
|
|
transformers.logging.set_verbosity_error()
|
|
|
|
# gets rid of annoying messages about random seed
|
|
logging.getLogger('pytorch_lightning').setLevel(logging.ERROR)
|
|
|
|
def prompt2png(self, prompt, outdir, **kwargs):
|
|
"""
|
|
Takes a prompt and an output directory, writes out the requested number
|
|
of PNG files, and returns an array of [[filename,seed],[filename,seed]...]
|
|
Optional named arguments are the same as those passed to Generate and prompt2image()
|
|
"""
|
|
results = self.prompt2image(prompt, **kwargs)
|
|
pngwriter = PngWriter(outdir)
|
|
prefix = pngwriter.unique_prefix()
|
|
outputs = []
|
|
for image, seed in results:
|
|
name = f'{prefix}.{seed}.png'
|
|
path = pngwriter.save_image_and_prompt_to_png(
|
|
image, dream_prompt=f'{prompt} -S{seed}', name=name)
|
|
outputs.append([path, seed])
|
|
return outputs
|
|
|
|
def txt2img(self, prompt, **kwargs):
|
|
outdir = kwargs.pop('outdir', 'outputs/img-samples')
|
|
return self.prompt2png(prompt, outdir, **kwargs)
|
|
|
|
def img2img(self, prompt, **kwargs):
|
|
outdir = kwargs.pop('outdir', 'outputs/img-samples')
|
|
assert (
|
|
'init_img' in kwargs
|
|
), 'call to img2img() must include the init_img argument'
|
|
return self.prompt2png(prompt, outdir, **kwargs)
|
|
|
|
def prompt2image(
|
|
self,
|
|
# these are common
|
|
prompt,
|
|
iterations = None,
|
|
steps = None,
|
|
seed = None,
|
|
cfg_scale = None,
|
|
ddim_eta = None,
|
|
skip_normalize = False,
|
|
image_callback = None,
|
|
step_callback = None,
|
|
width = None,
|
|
height = None,
|
|
sampler_name = None,
|
|
seamless = False,
|
|
log_tokenization = False,
|
|
with_variations = None,
|
|
variation_amount = 0.0,
|
|
threshold = 0.0,
|
|
perlin = 0.0,
|
|
# these are specific to img2img and inpaint
|
|
init_img = None,
|
|
init_mask = None,
|
|
fit = False,
|
|
strength = None,
|
|
init_color = None,
|
|
# these are specific to embiggen (which also relies on img2img args)
|
|
embiggen = None,
|
|
embiggen_tiles = None,
|
|
out_direction = None,
|
|
# these are specific to GFPGAN/ESRGAN
|
|
facetool = None,
|
|
gfpgan_strength = 0,
|
|
codeformer_fidelity = None,
|
|
save_original = False,
|
|
upscale = None,
|
|
# Set this True to handle KeyboardInterrupt internally
|
|
catch_interrupts = False,
|
|
hires_fix = False,
|
|
**args,
|
|
): # eat up additional cruft
|
|
"""
|
|
ldm.generate.prompt2image() is the common entry point for txt2img() and img2img()
|
|
It takes the following arguments:
|
|
prompt // prompt string (no default)
|
|
iterations // iterations (1); image count=iterations
|
|
steps // refinement steps per iteration
|
|
seed // seed for random number generator
|
|
width // width of image, in multiples of 64 (512)
|
|
height // height of image, in multiples of 64 (512)
|
|
cfg_scale // how strongly the prompt influences the image (7.5) (must be >1)
|
|
seamless // whether the generated image should tile
|
|
init_img // path to an initial image
|
|
strength // strength for noising/unnoising init_img. 0.0 preserves image exactly, 1.0 replaces it completely
|
|
gfpgan_strength // strength for GFPGAN. 0.0 preserves image exactly, 1.0 replaces it completely
|
|
ddim_eta // image randomness (eta=0.0 means the same seed always produces the same image)
|
|
step_callback // a function or method that will be called each step
|
|
image_callback // a function or method that will be called each time an image is generated
|
|
with_variations // a weighted list [(seed_1, weight_1), (seed_2, weight_2), ...] of variations which should be applied before doing any generation
|
|
variation_amount // optional 0-1 value to slerp from -S noise to random noise (allows variations on an image)
|
|
threshold // optional value >=0 to add thresholding to latent values for k-diffusion samplers (0 disables)
|
|
perlin // optional 0-1 value to add a percentage of perlin noise to the initial noise
|
|
embiggen // scale factor relative to the size of the --init_img (-I), followed by ESRGAN upscaling strength (0-1.0), followed by minimum amount of overlap between tiles as a decimal ratio (0 - 1.0) or number of pixels
|
|
embiggen_tiles // list of tiles by number in order to process and replace onto the image e.g. `0 2 4`
|
|
|
|
To use the step callback, define a function that receives two arguments:
|
|
- Image GPU data
|
|
- The step number
|
|
|
|
To use the image callback, define a function of method that receives two arguments, an Image object
|
|
and the seed. You can then do whatever you like with the image, including converting it to
|
|
different formats and manipulating it. For example:
|
|
|
|
def process_image(image,seed):
|
|
image.save(f{'images/seed.png'})
|
|
|
|
The callback used by the prompt2png() can be found in ldm/dream_util.py. It contains code
|
|
to create the requested output directory, select a unique informative name for each image, and
|
|
write the prompt into the PNG metadata.
|
|
"""
|
|
# TODO: convert this into a getattr() loop
|
|
steps = steps or self.steps
|
|
width = width or self.width
|
|
height = height or self.height
|
|
seamless = seamless or self.seamless
|
|
cfg_scale = cfg_scale or self.cfg_scale
|
|
ddim_eta = ddim_eta or self.ddim_eta
|
|
iterations = iterations or self.iterations
|
|
strength = strength or self.strength
|
|
self.seed = seed
|
|
self.log_tokenization = log_tokenization
|
|
self.step_callback = step_callback
|
|
with_variations = [] if with_variations is None else with_variations
|
|
|
|
# will instantiate the model or return it from cache
|
|
model = self.load_model()
|
|
|
|
for m in model.modules():
|
|
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
|
|
m.padding_mode = 'circular' if seamless else m._orig_padding_mode
|
|
|
|
assert cfg_scale > 1.0, 'CFG_Scale (-C) must be >1.0'
|
|
assert threshold >= 0.0, '--threshold must be >=0.0'
|
|
assert (
|
|
0.0 < strength < 1.0
|
|
), 'img2img and inpaint strength can only work with 0.0 < strength < 1.0'
|
|
assert (
|
|
0.0 <= variation_amount <= 1.0
|
|
), '-v --variation_amount must be in [0.0, 1.0]'
|
|
assert (
|
|
0.0 <= perlin <= 1.0
|
|
), '--perlin must be in [0.0, 1.0]'
|
|
assert (
|
|
(embiggen == None and embiggen_tiles == None) or (
|
|
(embiggen != None or embiggen_tiles != None) and init_img != None)
|
|
), 'Embiggen requires an init/input image to be specified'
|
|
|
|
if len(with_variations) > 0 or variation_amount > 1.0:
|
|
assert seed is not None,\
|
|
'seed must be specified when using with_variations'
|
|
if variation_amount == 0.0:
|
|
assert iterations == 1,\
|
|
'when using --with_variations, multiple iterations are only possible when using --variation_amount'
|
|
assert all(0 <= weight <= 1 for _, weight in with_variations),\
|
|
f'variation weights must be in [0.0, 1.0]: got {[weight for _, weight in with_variations]}'
|
|
|
|
width, height, _ = self._resolution_check(width, height, log=True)
|
|
|
|
if sampler_name and (sampler_name != self.sampler_name):
|
|
self.sampler_name = sampler_name
|
|
self._set_sampler()
|
|
|
|
tic = time.time()
|
|
if self._has_cuda():
|
|
torch.cuda.reset_peak_memory_stats()
|
|
|
|
results = list()
|
|
init_image = None
|
|
mask_image = None
|
|
|
|
try:
|
|
uc, c = get_uc_and_c(
|
|
prompt, model =self.model,
|
|
skip_normalize=skip_normalize,
|
|
log_tokens =self.log_tokenization
|
|
)
|
|
|
|
init_image,mask_image = self._make_images(
|
|
init_img,
|
|
init_mask,
|
|
width,
|
|
height,
|
|
fit=fit,
|
|
out_direction=out_direction,
|
|
)
|
|
if (init_image is not None) and (mask_image is not None):
|
|
generator = self._make_inpaint()
|
|
elif (embiggen != None or embiggen_tiles != None):
|
|
generator = self._make_embiggen()
|
|
elif init_image is not None:
|
|
generator = self._make_img2img()
|
|
elif hires_fix:
|
|
generator = self._make_txt2img2img()
|
|
else:
|
|
generator = self._make_txt2img()
|
|
|
|
generator.set_variation(
|
|
self.seed, variation_amount, with_variations)
|
|
results = generator.generate(
|
|
prompt,
|
|
iterations=iterations,
|
|
seed=self.seed,
|
|
sampler=self.sampler,
|
|
steps=steps,
|
|
cfg_scale=cfg_scale,
|
|
conditioning=(uc, c),
|
|
ddim_eta=ddim_eta,
|
|
image_callback=image_callback, # called after the final image is generated
|
|
step_callback=step_callback, # called after each intermediate image is generated
|
|
width=width,
|
|
height=height,
|
|
init_img=init_img, # embiggen needs to manipulate from the unmodified init_img
|
|
init_image=init_image, # notice that init_image is different from init_img
|
|
mask_image=mask_image,
|
|
strength=strength,
|
|
threshold=threshold,
|
|
perlin=perlin,
|
|
embiggen=embiggen,
|
|
embiggen_tiles=embiggen_tiles,
|
|
)
|
|
|
|
if init_color:
|
|
self.correct_colors(image_list = results,
|
|
reference_image_path = init_color,
|
|
image_callback = image_callback)
|
|
|
|
if upscale is not None or gfpgan_strength > 0:
|
|
self.upscale_and_reconstruct(results,
|
|
upscale = upscale,
|
|
facetool = facetool,
|
|
strength = gfpgan_strength,
|
|
codeformer_fidelity = codeformer_fidelity,
|
|
save_original = save_original,
|
|
image_callback = image_callback)
|
|
|
|
except RuntimeError as e:
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
print('>> Could not generate image.')
|
|
except KeyboardInterrupt:
|
|
if catch_interrupts:
|
|
print('**Interrupted** Partial results will be returned.')
|
|
else:
|
|
raise KeyboardInterrupt
|
|
|
|
toc = time.time()
|
|
print('>> Usage stats:')
|
|
print(
|
|
f'>> {len(results)} image(s) generated in', '%4.2fs' % (
|
|
toc - tic)
|
|
)
|
|
if self._has_cuda():
|
|
print(
|
|
f'>> Max VRAM used for this generation:',
|
|
'%4.2fG.' % (torch.cuda.max_memory_allocated() / 1e9),
|
|
'Current VRAM utilization:',
|
|
'%4.2fG' % (torch.cuda.memory_allocated() / 1e9),
|
|
)
|
|
|
|
self.session_peakmem = max(
|
|
self.session_peakmem, torch.cuda.max_memory_allocated()
|
|
)
|
|
print(
|
|
f'>> Max VRAM used since script start: ',
|
|
'%4.2fG' % (self.session_peakmem / 1e9),
|
|
)
|
|
return results
|
|
|
|
# this needs to be generalized to all sorts of postprocessors, which should be wrapped
|
|
# in a nice harmonized call signature. For now we have a bunch of if/elses!
|
|
def apply_postprocessor(
|
|
self,
|
|
image_path,
|
|
tool = 'gfpgan', # one of 'upscale', 'gfpgan', 'codeformer', 'outpaint', or 'embiggen'
|
|
gfpgan_strength = 0.0,
|
|
codeformer_fidelity = 0.75,
|
|
upscale = None,
|
|
out_direction = None,
|
|
save_original = True, # to get new name
|
|
callback = None,
|
|
opt = None,
|
|
):
|
|
# retrieve the seed from the image;
|
|
seed = None
|
|
image_metadata = None
|
|
prompt = None
|
|
|
|
args = metadata_from_png(image_path)
|
|
seed = args.seed
|
|
prompt = args.prompt
|
|
print(f'>> retrieved seed {seed} and prompt "{prompt}" from {image_path}')
|
|
|
|
if not seed:
|
|
print('* Could not recover seed for image. Replacing with 42. This will not affect image quality')
|
|
seed = 42
|
|
|
|
# try to reuse the same filename prefix as the original file.
|
|
# note that this is hacky
|
|
prefix = None
|
|
m = re.search('(\d+)\.',os.path.basename(image_path))
|
|
if m:
|
|
prefix = m.groups()[0]
|
|
|
|
# face fixers and esrgan take an Image, but embiggen takes a path
|
|
image = Image.open(image_path)
|
|
|
|
# Note that we need to adopt a uniform API for the postprocessors.
|
|
# This is completely ad hoc ATCM
|
|
if tool in ('gfpgan','codeformer','upscale'):
|
|
if tool == 'gfpgan':
|
|
facetool = 'gfpgan'
|
|
elif tool == 'codeformer':
|
|
facetool = 'codeformer'
|
|
elif tool == 'upscale':
|
|
facetool = 'gfpgan' # but won't be run
|
|
gfpgan_strength = 0
|
|
return self.upscale_and_reconstruct(
|
|
[[image,seed]],
|
|
facetool = facetool,
|
|
strength = gfpgan_strength,
|
|
codeformer_fidelity = codeformer_fidelity,
|
|
save_original = save_original,
|
|
upscale = upscale,
|
|
image_callback = callback,
|
|
prefix = prefix,
|
|
)
|
|
|
|
elif tool == 'embiggen':
|
|
# fetch the metadata from the image
|
|
generator = self._make_embiggen()
|
|
uc, c = get_uc_and_c(
|
|
prompt, model =self.model,
|
|
skip_normalize=opt.skip_normalize,
|
|
log_tokens =opt.log_tokenization
|
|
)
|
|
opt.strength = 0.40
|
|
print(f'>> Setting img2img strength to {opt.strength} for happy embiggening')
|
|
# embiggen takes a image path (sigh)
|
|
generator.generate(
|
|
prompt,
|
|
sampler = self.sampler,
|
|
steps = opt.steps,
|
|
cfg_scale = opt.cfg_scale,
|
|
ddim_eta = self.ddim_eta,
|
|
conditioning= (uc, c),
|
|
init_img = image_path, # not the Image! (sigh)
|
|
init_image = image, # embiggen wants both! (sigh)
|
|
strength = opt.strength,
|
|
width = opt.width,
|
|
height = opt.height,
|
|
embiggen = opt.embiggen,
|
|
embiggen_tiles = opt.embiggen_tiles,
|
|
image_callback = callback,
|
|
)
|
|
elif tool == 'outpaint':
|
|
oldargs = metadata_from_png(image_path)
|
|
opt.strength = 0.83
|
|
opt.init_img = image_path
|
|
return self.prompt2image(
|
|
oldargs.prompt,
|
|
out_direction = opt.out_direction,
|
|
sampler = self.sampler,
|
|
steps = opt.steps,
|
|
cfg_scale = opt.cfg_scale,
|
|
ddim_eta = self.ddim_eta,
|
|
conditioning= get_uc_and_c(
|
|
oldargs.prompt, model =self.model,
|
|
skip_normalize=opt.skip_normalize,
|
|
log_tokens =opt.log_tokenization
|
|
),
|
|
width = opt.width,
|
|
height = opt.height,
|
|
init_img = image_path, # not the Image! (sigh)
|
|
strength = opt.strength,
|
|
image_callback = callback,
|
|
)
|
|
elif tool is None:
|
|
print(f'* please provide at least one postprocessing option, such as -G or -U')
|
|
return None
|
|
else:
|
|
print(f'* postprocessing tool {tool} is not yet supported')
|
|
return None
|
|
|
|
|
|
def _make_images(
|
|
self,
|
|
img,
|
|
mask,
|
|
width,
|
|
height,
|
|
fit=False,
|
|
out_direction=None,
|
|
):
|
|
init_image = None
|
|
init_mask = None
|
|
if not img:
|
|
return None, None
|
|
|
|
image = self._load_img(
|
|
img,
|
|
width,
|
|
height,
|
|
) # this returns an Image
|
|
|
|
# if image has a transparent area and no mask was provided, then try to generate mask
|
|
if self._has_transparency(image) and not mask:
|
|
print(
|
|
'>> Initial image has transparent areas. Will inpaint in these regions.')
|
|
if self._check_for_erasure(image):
|
|
print(
|
|
'>> WARNING: Colors underneath the transparent region seem to have been erased.\n',
|
|
'>> Inpainting will be suboptimal. Please preserve the colors when making\n',
|
|
'>> a transparency mask, or provide mask explicitly using --init_mask (-M).'
|
|
)
|
|
# this returns a torch tensor
|
|
init_mask = self._create_init_mask(image,width,height,fit=fit)
|
|
|
|
if (image.width * image.height) > (self.width * self.height):
|
|
print(">> This input is larger than your defaults. If you run out of memory, please use a smaller image.")
|
|
|
|
init_image = self._create_init_image(image,width,height,fit=fit) # this returns a torch tensor
|
|
|
|
if mask:
|
|
mask_image = self._load_img(
|
|
mask, width, height) # this returns an Image
|
|
init_mask = self._create_init_mask(mask_image,width,height,fit=fit)
|
|
|
|
return init_image, init_mask
|
|
|
|
def _make_base(self):
|
|
if not self.generators.get('base'):
|
|
from ldm.dream.generator import Generator
|
|
self.generators['base'] = Generator(self.model, self.precision)
|
|
return self.generators['base']
|
|
|
|
def _make_img2img(self):
|
|
if not self.generators.get('img2img'):
|
|
from ldm.dream.generator.img2img import Img2Img
|
|
self.generators['img2img'] = Img2Img(self.model, self.precision)
|
|
return self.generators['img2img']
|
|
|
|
def _make_embiggen(self):
|
|
if not self.generators.get('embiggen'):
|
|
from ldm.dream.generator.embiggen import Embiggen
|
|
self.generators['embiggen'] = Embiggen(self.model, self.precision)
|
|
return self.generators['embiggen']
|
|
|
|
def _make_txt2img(self):
|
|
if not self.generators.get('txt2img'):
|
|
from ldm.dream.generator.txt2img import Txt2Img
|
|
self.generators['txt2img'] = Txt2Img(self.model, self.precision)
|
|
self.generators['txt2img'].free_gpu_mem = self.free_gpu_mem
|
|
return self.generators['txt2img']
|
|
|
|
def _make_txt2img2img(self):
|
|
if not self.generators.get('txt2img2'):
|
|
from ldm.dream.generator.txt2img2img import Txt2Img2Img
|
|
self.generators['txt2img2'] = Txt2Img2Img(self.model, self.precision)
|
|
self.generators['txt2img2'].free_gpu_mem = self.free_gpu_mem
|
|
return self.generators['txt2img2']
|
|
|
|
def _make_inpaint(self):
|
|
if not self.generators.get('inpaint'):
|
|
from ldm.dream.generator.inpaint import Inpaint
|
|
self.generators['inpaint'] = Inpaint(self.model, self.precision)
|
|
return self.generators['inpaint']
|
|
|
|
def load_model(self):
|
|
"""Load and initialize the model from configuration variables passed at object creation time"""
|
|
if self.model is None:
|
|
seed_everything(random.randrange(0, np.iinfo(np.uint32).max))
|
|
try:
|
|
model = self._load_model_from_config(self.config, self.weights)
|
|
if self.embedding_path is not None:
|
|
model.embedding_manager.load(
|
|
self.embedding_path, self.precision == 'float32' or self.precision == 'autocast'
|
|
)
|
|
self.model = model.to(self.device)
|
|
# model.to doesn't change the cond_stage_model.device used to move the tokenizer output, so set it here
|
|
self.model.cond_stage_model.device = self.device
|
|
except AttributeError as e:
|
|
print(f'>> Error loading model. {str(e)}', file=sys.stderr)
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
raise SystemExit from e
|
|
|
|
self._set_sampler()
|
|
|
|
for m in self.model.modules():
|
|
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
|
|
m._orig_padding_mode = m.padding_mode
|
|
|
|
return self.model
|
|
|
|
def correct_colors(self,
|
|
image_list,
|
|
reference_image_path,
|
|
image_callback = None):
|
|
reference_image = Image.open(reference_image_path)
|
|
correction_target = cv2.cvtColor(np.asarray(reference_image),
|
|
cv2.COLOR_RGB2LAB)
|
|
for r in image_list:
|
|
image, seed = r
|
|
image = cv2.cvtColor(np.asarray(image),
|
|
cv2.COLOR_RGB2LAB)
|
|
image = skimage.exposure.match_histograms(image,
|
|
correction_target,
|
|
channel_axis=2)
|
|
image = Image.fromarray(
|
|
cv2.cvtColor(image, cv2.COLOR_LAB2RGB).astype("uint8")
|
|
)
|
|
if image_callback is not None:
|
|
image_callback(image, seed)
|
|
else:
|
|
r[0] = image
|
|
|
|
def upscale_and_reconstruct(self,
|
|
image_list,
|
|
facetool = 'gfpgan',
|
|
upscale = None,
|
|
strength = 0.0,
|
|
codeformer_fidelity = 0.75,
|
|
save_original = False,
|
|
image_callback = None,
|
|
prefix = None,
|
|
):
|
|
|
|
for r in image_list:
|
|
image, seed = r
|
|
try:
|
|
if strength > 0:
|
|
if self.gfpgan is not None or self.codeformer is not None:
|
|
if facetool == 'gfpgan':
|
|
if self.gfpgan is None:
|
|
print('>> GFPGAN not found. Face restoration is disabled.')
|
|
else:
|
|
image = self.gfpgan.process(image, strength, seed)
|
|
if facetool == 'codeformer':
|
|
if self.codeformer is None:
|
|
print('>> CodeFormer not found. Face restoration is disabled.')
|
|
else:
|
|
cf_device = 'cpu' if str(self.device) == 'mps' else self.device
|
|
image = self.codeformer.process(image=image, strength=strength, device=cf_device, seed=seed, fidelity=codeformer_fidelity)
|
|
else:
|
|
print(">> Face Restoration is disabled.")
|
|
if upscale is not None:
|
|
if self.esrgan is not None:
|
|
if len(upscale) < 2:
|
|
upscale.append(0.75)
|
|
image = self.esrgan.process(
|
|
image, upscale[1], seed, int(upscale[0]))
|
|
else:
|
|
print(">> ESRGAN is disabled. Image not upscaled.")
|
|
except Exception as e:
|
|
print(
|
|
f'>> Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}'
|
|
)
|
|
|
|
if image_callback is not None:
|
|
image_callback(image, seed, upscaled=True, use_prefix=prefix)
|
|
else:
|
|
r[0] = image
|
|
|
|
# to help WebGUI - front end to generator util function
|
|
def sample_to_image(self, samples):
|
|
return self._make_base().sample_to_image(samples)
|
|
|
|
def _set_sampler(self):
|
|
msg = f'>> Setting Sampler to {self.sampler_name}'
|
|
if self.sampler_name == 'plms':
|
|
self.sampler = PLMSSampler(self.model, device=self.device)
|
|
elif self.sampler_name == 'ddim':
|
|
self.sampler = DDIMSampler(self.model, device=self.device)
|
|
elif self.sampler_name == 'k_dpm_2_a':
|
|
self.sampler = KSampler(
|
|
self.model, 'dpm_2_ancestral', device=self.device
|
|
)
|
|
elif self.sampler_name == 'k_dpm_2':
|
|
self.sampler = KSampler(self.model, 'dpm_2', device=self.device)
|
|
elif self.sampler_name == 'k_euler_a':
|
|
self.sampler = KSampler(
|
|
self.model, 'euler_ancestral', device=self.device
|
|
)
|
|
elif self.sampler_name == 'k_euler':
|
|
self.sampler = KSampler(self.model, 'euler', device=self.device)
|
|
elif self.sampler_name == 'k_heun':
|
|
self.sampler = KSampler(self.model, 'heun', device=self.device)
|
|
elif self.sampler_name == 'k_lms':
|
|
self.sampler = KSampler(self.model, 'lms', device=self.device)
|
|
else:
|
|
msg = f'>> Unsupported Sampler: {self.sampler_name}, Defaulting to plms'
|
|
self.sampler = PLMSSampler(self.model, device=self.device)
|
|
|
|
print(msg)
|
|
|
|
# Be warned: config is the path to the model config file, not the dream conf file!
|
|
# Also note that we can get config and weights from self, so why do we need to
|
|
# pass them as args?
|
|
def _load_model_from_config(self, config, weights):
|
|
print(f'>> Loading model from {weights}')
|
|
|
|
# for usage statistics
|
|
device_type = choose_torch_device()
|
|
if device_type == 'cuda':
|
|
torch.cuda.reset_peak_memory_stats()
|
|
tic = time.time()
|
|
|
|
# this does the work
|
|
c = OmegaConf.load(config)
|
|
with open(weights,'rb') as f:
|
|
weight_bytes = f.read()
|
|
self.model_hash = self._cached_sha256(weights,weight_bytes)
|
|
pl_sd = torch.load(io.BytesIO(weight_bytes), map_location='cpu')
|
|
del weight_bytes
|
|
sd = pl_sd['state_dict']
|
|
model = instantiate_from_config(c.model)
|
|
m, u = model.load_state_dict(sd, strict=False)
|
|
|
|
if self.precision == 'float16':
|
|
print('>> Using faster float16 precision')
|
|
model.to(torch.float16)
|
|
else:
|
|
print('>> Using more accurate float32 precision')
|
|
|
|
model.to(self.device)
|
|
model.eval()
|
|
|
|
# usage statistics
|
|
toc = time.time()
|
|
print(
|
|
f'>> Model loaded in', '%4.2fs' % (toc - tic)
|
|
)
|
|
if self._has_cuda():
|
|
print(
|
|
'>> Max VRAM used to load the model:',
|
|
'%4.2fG' % (torch.cuda.max_memory_allocated() / 1e9),
|
|
'\n>> Current VRAM usage:'
|
|
'%4.2fG' % (torch.cuda.memory_allocated() / 1e9),
|
|
)
|
|
|
|
return model
|
|
|
|
def _load_img(self, img, width, height)->Image:
|
|
if isinstance(img, Image.Image):
|
|
image = img
|
|
print(
|
|
f'>> using provided input image of size {image.width}x{image.height}'
|
|
)
|
|
elif isinstance(img, str):
|
|
assert os.path.exists(img), f'>> {img}: File not found'
|
|
|
|
image = Image.open(img)
|
|
print(
|
|
f'>> loaded input image of size {image.width}x{image.height} from {img}'
|
|
)
|
|
else:
|
|
image = Image.open(img)
|
|
print(
|
|
f'>> loaded input image of size {image.width}x{image.height}'
|
|
)
|
|
return image
|
|
|
|
def _create_init_image(self, image, width, height, fit=True):
|
|
image = image.convert('RGB')
|
|
if fit:
|
|
image = self._fit_image(image, (width, height))
|
|
else:
|
|
image = self._squeeze_image(image)
|
|
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
image = image[None].transpose(0, 3, 1, 2)
|
|
image = torch.from_numpy(image)
|
|
image = 2.0 * image - 1.0
|
|
return image.to(self.device)
|
|
|
|
# TODO: outpainting is a post-processing application and should be made to behave
|
|
# like the other ones.
|
|
def _create_outpaint_image(self, image, direction_args):
|
|
assert len(direction_args) in [1, 2], 'Direction (-D) must have exactly one or two arguments.'
|
|
|
|
if len(direction_args) == 1:
|
|
direction = direction_args[0]
|
|
pixels = None
|
|
elif len(direction_args) == 2:
|
|
direction = direction_args[0]
|
|
pixels = int(direction_args[1])
|
|
|
|
assert direction in ['top', 'left', 'bottom', 'right'], 'Direction (-D) must be one of "top", "left", "bottom", "right"'
|
|
|
|
image = image.convert("RGBA")
|
|
# we always extend top, but rotate to extend along the requested side
|
|
if direction == 'left':
|
|
image = image.transpose(Image.Transpose.ROTATE_270)
|
|
elif direction == 'bottom':
|
|
image = image.transpose(Image.Transpose.ROTATE_180)
|
|
elif direction == 'right':
|
|
image = image.transpose(Image.Transpose.ROTATE_90)
|
|
|
|
pixels = image.height//2 if pixels is None else int(pixels)
|
|
assert 0 < pixels < image.height, 'Direction (-D) pixels length must be in the range 0 - image.size'
|
|
|
|
# the top part of the image is taken from the source image mirrored
|
|
# coordinates (0,0) are the upper left corner of an image
|
|
top = image.transpose(Image.Transpose.FLIP_TOP_BOTTOM).convert("RGBA")
|
|
top = top.crop((0, top.height - pixels, top.width, top.height))
|
|
|
|
# setting all alpha of the top part to 0
|
|
alpha = top.getchannel("A")
|
|
alpha.paste(0, (0, 0, top.width, top.height))
|
|
top.putalpha(alpha)
|
|
|
|
# taking the bottom from the original image
|
|
bottom = image.crop((0, 0, image.width, image.height - pixels))
|
|
|
|
new_img = image.copy()
|
|
new_img.paste(top, (0, 0))
|
|
new_img.paste(bottom, (0, pixels))
|
|
|
|
# create a 10% dither in the middle
|
|
dither = min(image.height//10, pixels)
|
|
for x in range(0, image.width, 2):
|
|
for y in range(pixels - dither, pixels + dither):
|
|
(r, g, b, a) = new_img.getpixel((x, y))
|
|
new_img.putpixel((x, y), (r, g, b, 0))
|
|
|
|
# let's rotate back again
|
|
if direction == 'left':
|
|
new_img = new_img.transpose(Image.Transpose.ROTATE_90)
|
|
elif direction == 'bottom':
|
|
new_img = new_img.transpose(Image.Transpose.ROTATE_180)
|
|
elif direction == 'right':
|
|
new_img = new_img.transpose(Image.Transpose.ROTATE_270)
|
|
|
|
return new_img
|
|
|
|
def _create_init_mask(self, image, width, height, fit=True):
|
|
# convert into a black/white mask
|
|
image = self._image_to_mask(image)
|
|
image = image.convert('RGB')
|
|
|
|
# now we adjust the size
|
|
if fit:
|
|
image = self._fit_image(image, (width, height))
|
|
else:
|
|
image = self._squeeze_image(image)
|
|
|
|
image = image.resize((image.width//downsampling, image.height //
|
|
downsampling), resample=Image.Resampling.NEAREST)
|
|
|
|
image = np.array(image)
|
|
image = image.astype(np.float32) / 255.0
|
|
image = image[None].transpose(0, 3, 1, 2)
|
|
image = torch.from_numpy(image)
|
|
return image.to(self.device)
|
|
|
|
# The mask is expected to have the region to be inpainted
|
|
# with alpha transparency. It converts it into a black/white
|
|
# image with the transparent part black.
|
|
def _image_to_mask(self, mask_image, invert=False) -> Image:
|
|
# Obtain the mask from the transparency channel
|
|
mask = Image.new(mode="L", size=mask_image.size, color=255)
|
|
mask.putdata(mask_image.getdata(band=3))
|
|
if invert:
|
|
mask = ImageOps.invert(mask)
|
|
return mask
|
|
|
|
def _has_transparency(self, image):
|
|
if image.info.get("transparency", None) is not None:
|
|
return True
|
|
if image.mode == "P":
|
|
transparent = image.info.get("transparency", -1)
|
|
for _, index in image.getcolors():
|
|
if index == transparent:
|
|
return True
|
|
elif image.mode == "RGBA":
|
|
extrema = image.getextrema()
|
|
if extrema[3][0] < 255:
|
|
return True
|
|
return False
|
|
|
|
def _check_for_erasure(self, image):
|
|
width, height = image.size
|
|
pixdata = image.load()
|
|
colored = 0
|
|
for y in range(height):
|
|
for x in range(width):
|
|
if pixdata[x, y][3] == 0:
|
|
r, g, b, _ = pixdata[x, y]
|
|
if (r, g, b) != (0, 0, 0) and \
|
|
(r, g, b) != (255, 255, 255):
|
|
colored += 1
|
|
return colored == 0
|
|
|
|
def _squeeze_image(self, image):
|
|
x, y, resize_needed = self._resolution_check(image.width, image.height)
|
|
if resize_needed:
|
|
return InitImageResizer(image).resize(x, y)
|
|
return image
|
|
|
|
def _fit_image(self, image, max_dimensions):
|
|
w, h = max_dimensions
|
|
print(
|
|
f'>> image will be resized to fit inside a box {w}x{h} in size.'
|
|
)
|
|
if image.width > image.height:
|
|
h = None # by setting h to none, we tell InitImageResizer to fit into the width and calculate height
|
|
elif image.height > image.width:
|
|
w = None # ditto for w
|
|
else:
|
|
pass
|
|
# note that InitImageResizer does the multiple of 64 truncation internally
|
|
image = InitImageResizer(image).resize(w, h)
|
|
print(
|
|
f'>> after adjusting image dimensions to be multiples of 64, init image is {image.width}x{image.height}'
|
|
)
|
|
return image
|
|
|
|
def _resolution_check(self, width, height, log=False):
|
|
resize_needed = False
|
|
w, h = map(
|
|
lambda x: x - x % 64, (width, height)
|
|
) # resize to integer multiple of 64
|
|
if h != height or w != width:
|
|
if log:
|
|
print(
|
|
f'>> Provided width and height must be multiples of 64. Auto-resizing to {w}x{h}'
|
|
)
|
|
height = h
|
|
width = w
|
|
resize_needed = True
|
|
return width, height, resize_needed
|
|
|
|
|
|
def _has_cuda(self):
|
|
return self.device.type == 'cuda'
|
|
|
|
def _cached_sha256(self,path,data):
|
|
dirname = os.path.dirname(path)
|
|
basename = os.path.basename(path)
|
|
base, _ = os.path.splitext(basename)
|
|
hashpath = os.path.join(dirname,base+'.sha256')
|
|
if os.path.exists(hashpath) and os.path.getmtime(path) <= os.path.getmtime(hashpath):
|
|
with open(hashpath) as f:
|
|
hash = f.read()
|
|
return hash
|
|
print(f'>> Calculating sha256 hash of weights file')
|
|
tic = time.time()
|
|
sha = hashlib.sha256()
|
|
sha.update(data)
|
|
hash = sha.hexdigest()
|
|
toc = time.time()
|
|
print(f'>> sha256 = {hash}','(%4.2fs)' % (toc - tic))
|
|
with open(hashpath,'w') as f:
|
|
f.write(hash)
|
|
return hash
|
|
|
|
def write_intermediate_images(self,modulus,path):
|
|
counter = -1
|
|
if not os.path.exists(path):
|
|
os.makedirs(path)
|
|
def callback(img):
|
|
nonlocal counter
|
|
counter += 1
|
|
if counter % modulus != 0:
|
|
return;
|
|
image = self.sample_to_image(img)
|
|
image.save(os.path.join(path,f'{counter:03}.png'),'PNG')
|
|
return callback
|