mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
- Imported V2 legacy models will now autoconvert into diffusers at load time regardless of setting of --ckpt_convert. - model manager `heuristic_import()` function now looks for side-by-side yaml and vae files for custom configuration and VAE respectively. Example of this: illuminati-v1.1.safetensors illuminati-v1.1.vae.safetensors illuminati-v1.1.yaml When the user tries to import `illuminati-v1.1.safetensors`, the yaml file will be used for its configuration, and the VAE will be used for its VAE. Conversion to diffusers will happen if needed, and the yaml file will be used to determine which V2 format (if any) to apply.
1347 lines
49 KiB
Python
1347 lines
49 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# Adapted for use as a module by Lincoln Stein <lstein@gmail.com>
|
|
# Original file at: https://github.com/huggingface/diffusers/blob/main/scripts/convert_ldm_original_checkpoint_to_diffusers.py
|
|
""" Conversion script for the LDM checkpoints. """
|
|
|
|
import re
|
|
import warnings
|
|
from pathlib import Path
|
|
from typing import Union
|
|
|
|
import torch
|
|
from safetensors.torch import load_file
|
|
|
|
from .globals import global_cache_dir, global_config_dir
|
|
|
|
from .model_manager import ModelManager, SDLegacyType
|
|
|
|
try:
|
|
from omegaconf import OmegaConf
|
|
except ImportError:
|
|
raise ImportError(
|
|
"OmegaConf is required to convert the LDM checkpoints. Please install it with `pip install OmegaConf`."
|
|
)
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
DDIMScheduler,
|
|
DPMSolverMultistepScheduler,
|
|
EulerAncestralDiscreteScheduler,
|
|
EulerDiscreteScheduler,
|
|
HeunDiscreteScheduler,
|
|
LDMTextToImagePipeline,
|
|
LMSDiscreteScheduler,
|
|
PNDMScheduler,
|
|
StableDiffusionPipeline,
|
|
UNet2DConditionModel,
|
|
)
|
|
from diffusers import logging as dlogging
|
|
from diffusers.pipelines.latent_diffusion.pipeline_latent_diffusion import (
|
|
LDMBertConfig,
|
|
LDMBertModel,
|
|
)
|
|
from diffusers.pipelines.paint_by_example import (
|
|
PaintByExampleImageEncoder,
|
|
PaintByExamplePipeline,
|
|
)
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
|
StableDiffusionSafetyChecker,
|
|
)
|
|
from diffusers.utils import is_safetensors_available
|
|
from transformers import (
|
|
AutoFeatureExtractor,
|
|
BertTokenizerFast,
|
|
CLIPTextModel,
|
|
CLIPTokenizer,
|
|
CLIPVisionConfig,
|
|
)
|
|
|
|
from ldm.invoke.generator.diffusers_pipeline import StableDiffusionGeneratorPipeline
|
|
|
|
|
|
def shave_segments(path, n_shave_prefix_segments=1):
|
|
"""
|
|
Removes segments. Positive values shave the first segments, negative shave the last segments.
|
|
"""
|
|
if n_shave_prefix_segments >= 0:
|
|
return ".".join(path.split(".")[n_shave_prefix_segments:])
|
|
else:
|
|
return ".".join(path.split(".")[:n_shave_prefix_segments])
|
|
|
|
|
|
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
|
|
"""
|
|
Updates paths inside resnets to the new naming scheme (local renaming)
|
|
"""
|
|
mapping = []
|
|
for old_item in old_list:
|
|
new_item = old_item.replace("in_layers.0", "norm1")
|
|
new_item = new_item.replace("in_layers.2", "conv1")
|
|
|
|
new_item = new_item.replace("out_layers.0", "norm2")
|
|
new_item = new_item.replace("out_layers.3", "conv2")
|
|
|
|
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
|
|
new_item = new_item.replace("skip_connection", "conv_shortcut")
|
|
|
|
new_item = shave_segments(
|
|
new_item, n_shave_prefix_segments=n_shave_prefix_segments
|
|
)
|
|
|
|
mapping.append({"old": old_item, "new": new_item})
|
|
|
|
return mapping
|
|
|
|
|
|
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
|
|
"""
|
|
Updates paths inside resnets to the new naming scheme (local renaming)
|
|
"""
|
|
mapping = []
|
|
for old_item in old_list:
|
|
new_item = old_item
|
|
|
|
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
|
|
new_item = shave_segments(
|
|
new_item, n_shave_prefix_segments=n_shave_prefix_segments
|
|
)
|
|
|
|
mapping.append({"old": old_item, "new": new_item})
|
|
|
|
return mapping
|
|
|
|
|
|
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
|
|
"""
|
|
Updates paths inside attentions to the new naming scheme (local renaming)
|
|
"""
|
|
mapping = []
|
|
for old_item in old_list:
|
|
new_item = old_item
|
|
|
|
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
|
|
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
|
|
|
|
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
|
|
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
|
|
|
|
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
|
|
|
mapping.append({"old": old_item, "new": new_item})
|
|
|
|
return mapping
|
|
|
|
|
|
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
|
|
"""
|
|
Updates paths inside attentions to the new naming scheme (local renaming)
|
|
"""
|
|
mapping = []
|
|
for old_item in old_list:
|
|
new_item = old_item
|
|
|
|
new_item = new_item.replace("norm.weight", "group_norm.weight")
|
|
new_item = new_item.replace("norm.bias", "group_norm.bias")
|
|
|
|
new_item = new_item.replace("q.weight", "query.weight")
|
|
new_item = new_item.replace("q.bias", "query.bias")
|
|
|
|
new_item = new_item.replace("k.weight", "key.weight")
|
|
new_item = new_item.replace("k.bias", "key.bias")
|
|
|
|
new_item = new_item.replace("v.weight", "value.weight")
|
|
new_item = new_item.replace("v.bias", "value.bias")
|
|
|
|
new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
|
|
new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
|
|
|
|
new_item = shave_segments(
|
|
new_item, n_shave_prefix_segments=n_shave_prefix_segments
|
|
)
|
|
|
|
mapping.append({"old": old_item, "new": new_item})
|
|
|
|
return mapping
|
|
|
|
|
|
def assign_to_checkpoint(
|
|
paths,
|
|
checkpoint,
|
|
old_checkpoint,
|
|
attention_paths_to_split=None,
|
|
additional_replacements=None,
|
|
config=None,
|
|
):
|
|
"""
|
|
This does the final conversion step: take locally converted weights and apply a global renaming
|
|
to them. It splits attention layers, and takes into account additional replacements
|
|
that may arise.
|
|
|
|
Assigns the weights to the new checkpoint.
|
|
"""
|
|
assert isinstance(
|
|
paths, list
|
|
), "Paths should be a list of dicts containing 'old' and 'new' keys."
|
|
|
|
# Splits the attention layers into three variables.
|
|
if attention_paths_to_split is not None:
|
|
for path, path_map in attention_paths_to_split.items():
|
|
old_tensor = old_checkpoint[path]
|
|
channels = old_tensor.shape[0] // 3
|
|
|
|
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
|
|
|
|
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
|
|
|
|
old_tensor = old_tensor.reshape(
|
|
(num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]
|
|
)
|
|
query, key, value = old_tensor.split(channels // num_heads, dim=1)
|
|
|
|
checkpoint[path_map["query"]] = query.reshape(target_shape)
|
|
checkpoint[path_map["key"]] = key.reshape(target_shape)
|
|
checkpoint[path_map["value"]] = value.reshape(target_shape)
|
|
|
|
for path in paths:
|
|
new_path = path["new"]
|
|
|
|
# These have already been assigned
|
|
if (
|
|
attention_paths_to_split is not None
|
|
and new_path in attention_paths_to_split
|
|
):
|
|
continue
|
|
|
|
# Global renaming happens here
|
|
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
|
|
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
|
|
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
|
|
|
|
if additional_replacements is not None:
|
|
for replacement in additional_replacements:
|
|
new_path = new_path.replace(replacement["old"], replacement["new"])
|
|
|
|
# proj_attn.weight has to be converted from conv 1D to linear
|
|
if "proj_attn.weight" in new_path:
|
|
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
|
|
else:
|
|
checkpoint[new_path] = old_checkpoint[path["old"]]
|
|
|
|
|
|
def conv_attn_to_linear(checkpoint):
|
|
keys = list(checkpoint.keys())
|
|
attn_keys = ["query.weight", "key.weight", "value.weight"]
|
|
for key in keys:
|
|
if ".".join(key.split(".")[-2:]) in attn_keys:
|
|
if checkpoint[key].ndim > 2:
|
|
checkpoint[key] = checkpoint[key][:, :, 0, 0]
|
|
elif "proj_attn.weight" in key:
|
|
if checkpoint[key].ndim > 2:
|
|
checkpoint[key] = checkpoint[key][:, :, 0]
|
|
|
|
|
|
def create_unet_diffusers_config(original_config, image_size: int):
|
|
"""
|
|
Creates a config for the diffusers based on the config of the LDM model.
|
|
"""
|
|
unet_params = original_config.model.params.unet_config.params
|
|
vae_params = original_config.model.params.first_stage_config.params.ddconfig
|
|
|
|
block_out_channels = [
|
|
unet_params.model_channels * mult for mult in unet_params.channel_mult
|
|
]
|
|
|
|
down_block_types = []
|
|
resolution = 1
|
|
for i in range(len(block_out_channels)):
|
|
block_type = (
|
|
"CrossAttnDownBlock2D"
|
|
if resolution in unet_params.attention_resolutions
|
|
else "DownBlock2D"
|
|
)
|
|
down_block_types.append(block_type)
|
|
if i != len(block_out_channels) - 1:
|
|
resolution *= 2
|
|
|
|
up_block_types = []
|
|
for i in range(len(block_out_channels)):
|
|
block_type = (
|
|
"CrossAttnUpBlock2D"
|
|
if resolution in unet_params.attention_resolutions
|
|
else "UpBlock2D"
|
|
)
|
|
up_block_types.append(block_type)
|
|
resolution //= 2
|
|
|
|
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
|
|
|
|
head_dim = unet_params.num_heads if "num_heads" in unet_params else None
|
|
use_linear_projection = (
|
|
unet_params.use_linear_in_transformer
|
|
if "use_linear_in_transformer" in unet_params
|
|
else False
|
|
)
|
|
if use_linear_projection:
|
|
# stable diffusion 2-base-512 and 2-768
|
|
if head_dim is None:
|
|
head_dim = [5, 10, 20, 20]
|
|
|
|
config = dict(
|
|
sample_size=image_size // vae_scale_factor,
|
|
in_channels=unet_params.in_channels,
|
|
out_channels=unet_params.out_channels,
|
|
down_block_types=tuple(down_block_types),
|
|
up_block_types=tuple(up_block_types),
|
|
block_out_channels=tuple(block_out_channels),
|
|
layers_per_block=unet_params.num_res_blocks,
|
|
cross_attention_dim=unet_params.context_dim,
|
|
attention_head_dim=head_dim,
|
|
use_linear_projection=use_linear_projection,
|
|
)
|
|
|
|
return config
|
|
|
|
|
|
def create_vae_diffusers_config(original_config, image_size: int):
|
|
"""
|
|
Creates a config for the diffusers based on the config of the LDM model.
|
|
"""
|
|
vae_params = original_config.model.params.first_stage_config.params.ddconfig
|
|
_ = original_config.model.params.first_stage_config.params.embed_dim
|
|
|
|
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
|
|
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
|
|
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
|
|
|
|
config = dict(
|
|
sample_size=image_size,
|
|
in_channels=vae_params.in_channels,
|
|
out_channels=vae_params.out_ch,
|
|
down_block_types=tuple(down_block_types),
|
|
up_block_types=tuple(up_block_types),
|
|
block_out_channels=tuple(block_out_channels),
|
|
latent_channels=vae_params.z_channels,
|
|
layers_per_block=vae_params.num_res_blocks,
|
|
)
|
|
return config
|
|
|
|
|
|
def create_diffusers_schedular(original_config):
|
|
schedular = DDIMScheduler(
|
|
num_train_timesteps=original_config.model.params.timesteps,
|
|
beta_start=original_config.model.params.linear_start,
|
|
beta_end=original_config.model.params.linear_end,
|
|
beta_schedule="scaled_linear",
|
|
)
|
|
return schedular
|
|
|
|
|
|
def create_ldm_bert_config(original_config):
|
|
bert_params = original_config.model.params.cond_stage_config.params
|
|
config = LDMBertConfig(
|
|
d_model=bert_params.n_embed,
|
|
encoder_layers=bert_params.n_layer,
|
|
encoder_ffn_dim=bert_params.n_embed * 4,
|
|
)
|
|
return config
|
|
|
|
|
|
def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False):
|
|
"""
|
|
Takes a state dict and a config, and returns a converted checkpoint.
|
|
"""
|
|
|
|
# extract state_dict for UNet
|
|
unet_state_dict = {}
|
|
keys = list(checkpoint.keys())
|
|
|
|
unet_key = "model.diffusion_model."
|
|
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
|
|
if sum(k.startswith("model_ema") for k in keys) > 100:
|
|
print(f" | Checkpoint {path} has both EMA and non-EMA weights.")
|
|
if extract_ema:
|
|
print(" | Extracting EMA weights (usually better for inference)")
|
|
for key in keys:
|
|
if key.startswith("model.diffusion_model"):
|
|
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
|
|
flat_ema_key_alt = "model_ema." + "".join(key.split(".")[2:])
|
|
if flat_ema_key in checkpoint:
|
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(
|
|
flat_ema_key
|
|
)
|
|
elif flat_ema_key_alt in checkpoint:
|
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(
|
|
flat_ema_key_alt
|
|
)
|
|
else:
|
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(
|
|
key
|
|
)
|
|
else:
|
|
print(
|
|
" | Extracting only the non-EMA weights (usually better for fine-tuning)"
|
|
)
|
|
|
|
for key in keys:
|
|
if key.startswith("model.diffusion_model") and key in checkpoint:
|
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
|
|
|
|
new_checkpoint = {}
|
|
|
|
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict[
|
|
"time_embed.0.weight"
|
|
]
|
|
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict[
|
|
"time_embed.0.bias"
|
|
]
|
|
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict[
|
|
"time_embed.2.weight"
|
|
]
|
|
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict[
|
|
"time_embed.2.bias"
|
|
]
|
|
|
|
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
|
|
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
|
|
|
|
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
|
|
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
|
|
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
|
|
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
|
|
|
|
# Retrieves the keys for the input blocks only
|
|
num_input_blocks = len(
|
|
{
|
|
".".join(layer.split(".")[:2])
|
|
for layer in unet_state_dict
|
|
if "input_blocks" in layer
|
|
}
|
|
)
|
|
input_blocks = {
|
|
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
|
|
for layer_id in range(num_input_blocks)
|
|
}
|
|
|
|
# Retrieves the keys for the middle blocks only
|
|
num_middle_blocks = len(
|
|
{
|
|
".".join(layer.split(".")[:2])
|
|
for layer in unet_state_dict
|
|
if "middle_block" in layer
|
|
}
|
|
)
|
|
middle_blocks = {
|
|
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
|
|
for layer_id in range(num_middle_blocks)
|
|
}
|
|
|
|
# Retrieves the keys for the output blocks only
|
|
num_output_blocks = len(
|
|
{
|
|
".".join(layer.split(".")[:2])
|
|
for layer in unet_state_dict
|
|
if "output_blocks" in layer
|
|
}
|
|
)
|
|
output_blocks = {
|
|
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
|
|
for layer_id in range(num_output_blocks)
|
|
}
|
|
|
|
for i in range(1, num_input_blocks):
|
|
block_id = (i - 1) // (config["layers_per_block"] + 1)
|
|
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
|
|
|
|
resnets = [
|
|
key
|
|
for key in input_blocks[i]
|
|
if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
|
|
]
|
|
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
|
|
|
|
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
|
|
new_checkpoint[
|
|
f"down_blocks.{block_id}.downsamplers.0.conv.weight"
|
|
] = unet_state_dict.pop(f"input_blocks.{i}.0.op.weight")
|
|
new_checkpoint[
|
|
f"down_blocks.{block_id}.downsamplers.0.conv.bias"
|
|
] = unet_state_dict.pop(f"input_blocks.{i}.0.op.bias")
|
|
|
|
paths = renew_resnet_paths(resnets)
|
|
meta_path = {
|
|
"old": f"input_blocks.{i}.0",
|
|
"new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}",
|
|
}
|
|
assign_to_checkpoint(
|
|
paths,
|
|
new_checkpoint,
|
|
unet_state_dict,
|
|
additional_replacements=[meta_path],
|
|
config=config,
|
|
)
|
|
|
|
if len(attentions):
|
|
paths = renew_attention_paths(attentions)
|
|
meta_path = {
|
|
"old": f"input_blocks.{i}.1",
|
|
"new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}",
|
|
}
|
|
assign_to_checkpoint(
|
|
paths,
|
|
new_checkpoint,
|
|
unet_state_dict,
|
|
additional_replacements=[meta_path],
|
|
config=config,
|
|
)
|
|
|
|
resnet_0 = middle_blocks[0]
|
|
attentions = middle_blocks[1]
|
|
resnet_1 = middle_blocks[2]
|
|
|
|
resnet_0_paths = renew_resnet_paths(resnet_0)
|
|
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
|
|
|
|
resnet_1_paths = renew_resnet_paths(resnet_1)
|
|
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
|
|
|
|
attentions_paths = renew_attention_paths(attentions)
|
|
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
|
|
assign_to_checkpoint(
|
|
attentions_paths,
|
|
new_checkpoint,
|
|
unet_state_dict,
|
|
additional_replacements=[meta_path],
|
|
config=config,
|
|
)
|
|
|
|
for i in range(num_output_blocks):
|
|
block_id = i // (config["layers_per_block"] + 1)
|
|
layer_in_block_id = i % (config["layers_per_block"] + 1)
|
|
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
|
|
output_block_list = {}
|
|
|
|
for layer in output_block_layers:
|
|
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
|
|
if layer_id in output_block_list:
|
|
output_block_list[layer_id].append(layer_name)
|
|
else:
|
|
output_block_list[layer_id] = [layer_name]
|
|
|
|
if len(output_block_list) > 1:
|
|
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
|
|
attentions = [
|
|
key for key in output_blocks[i] if f"output_blocks.{i}.1" in key
|
|
]
|
|
|
|
resnet_0_paths = renew_resnet_paths(resnets)
|
|
paths = renew_resnet_paths(resnets)
|
|
|
|
meta_path = {
|
|
"old": f"output_blocks.{i}.0",
|
|
"new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}",
|
|
}
|
|
assign_to_checkpoint(
|
|
paths,
|
|
new_checkpoint,
|
|
unet_state_dict,
|
|
additional_replacements=[meta_path],
|
|
config=config,
|
|
)
|
|
|
|
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
|
|
if ["conv.bias", "conv.weight"] in output_block_list.values():
|
|
index = list(output_block_list.values()).index(
|
|
["conv.bias", "conv.weight"]
|
|
)
|
|
new_checkpoint[
|
|
f"up_blocks.{block_id}.upsamplers.0.conv.weight"
|
|
] = unet_state_dict[f"output_blocks.{i}.{index}.conv.weight"]
|
|
new_checkpoint[
|
|
f"up_blocks.{block_id}.upsamplers.0.conv.bias"
|
|
] = unet_state_dict[f"output_blocks.{i}.{index}.conv.bias"]
|
|
|
|
# Clear attentions as they have been attributed above.
|
|
if len(attentions) == 2:
|
|
attentions = []
|
|
|
|
if len(attentions):
|
|
paths = renew_attention_paths(attentions)
|
|
meta_path = {
|
|
"old": f"output_blocks.{i}.1",
|
|
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
|
|
}
|
|
assign_to_checkpoint(
|
|
paths,
|
|
new_checkpoint,
|
|
unet_state_dict,
|
|
additional_replacements=[meta_path],
|
|
config=config,
|
|
)
|
|
else:
|
|
resnet_0_paths = renew_resnet_paths(
|
|
output_block_layers, n_shave_prefix_segments=1
|
|
)
|
|
for path in resnet_0_paths:
|
|
old_path = ".".join(["output_blocks", str(i), path["old"]])
|
|
new_path = ".".join(
|
|
[
|
|
"up_blocks",
|
|
str(block_id),
|
|
"resnets",
|
|
str(layer_in_block_id),
|
|
path["new"],
|
|
]
|
|
)
|
|
|
|
new_checkpoint[new_path] = unet_state_dict[old_path]
|
|
|
|
return new_checkpoint
|
|
|
|
|
|
def convert_ldm_vae_checkpoint(checkpoint, config):
|
|
# extract state dict for VAE
|
|
vae_state_dict = {}
|
|
vae_key = "first_stage_model."
|
|
keys = list(checkpoint.keys())
|
|
for key in keys:
|
|
if key.startswith(vae_key):
|
|
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
|
|
|
|
new_checkpoint = {}
|
|
|
|
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
|
|
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
|
|
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict[
|
|
"encoder.conv_out.weight"
|
|
]
|
|
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
|
|
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict[
|
|
"encoder.norm_out.weight"
|
|
]
|
|
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict[
|
|
"encoder.norm_out.bias"
|
|
]
|
|
|
|
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
|
|
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
|
|
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict[
|
|
"decoder.conv_out.weight"
|
|
]
|
|
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
|
|
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict[
|
|
"decoder.norm_out.weight"
|
|
]
|
|
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict[
|
|
"decoder.norm_out.bias"
|
|
]
|
|
|
|
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
|
|
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
|
|
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
|
|
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
|
|
|
|
# Retrieves the keys for the encoder down blocks only
|
|
num_down_blocks = len(
|
|
{
|
|
".".join(layer.split(".")[:3])
|
|
for layer in vae_state_dict
|
|
if "encoder.down" in layer
|
|
}
|
|
)
|
|
down_blocks = {
|
|
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key]
|
|
for layer_id in range(num_down_blocks)
|
|
}
|
|
|
|
# Retrieves the keys for the decoder up blocks only
|
|
num_up_blocks = len(
|
|
{
|
|
".".join(layer.split(".")[:3])
|
|
for layer in vae_state_dict
|
|
if "decoder.up" in layer
|
|
}
|
|
)
|
|
up_blocks = {
|
|
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key]
|
|
for layer_id in range(num_up_blocks)
|
|
}
|
|
|
|
for i in range(num_down_blocks):
|
|
resnets = [
|
|
key
|
|
for key in down_blocks[i]
|
|
if f"down.{i}" in key and f"down.{i}.downsample" not in key
|
|
]
|
|
|
|
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
|
|
new_checkpoint[
|
|
f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"
|
|
] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.weight")
|
|
new_checkpoint[
|
|
f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"
|
|
] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.bias")
|
|
|
|
paths = renew_vae_resnet_paths(resnets)
|
|
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
|
|
assign_to_checkpoint(
|
|
paths,
|
|
new_checkpoint,
|
|
vae_state_dict,
|
|
additional_replacements=[meta_path],
|
|
config=config,
|
|
)
|
|
|
|
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
|
|
num_mid_res_blocks = 2
|
|
for i in range(1, num_mid_res_blocks + 1):
|
|
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
|
|
|
|
paths = renew_vae_resnet_paths(resnets)
|
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
|
assign_to_checkpoint(
|
|
paths,
|
|
new_checkpoint,
|
|
vae_state_dict,
|
|
additional_replacements=[meta_path],
|
|
config=config,
|
|
)
|
|
|
|
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
|
|
paths = renew_vae_attention_paths(mid_attentions)
|
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
|
assign_to_checkpoint(
|
|
paths,
|
|
new_checkpoint,
|
|
vae_state_dict,
|
|
additional_replacements=[meta_path],
|
|
config=config,
|
|
)
|
|
conv_attn_to_linear(new_checkpoint)
|
|
|
|
for i in range(num_up_blocks):
|
|
block_id = num_up_blocks - 1 - i
|
|
resnets = [
|
|
key
|
|
for key in up_blocks[block_id]
|
|
if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
|
|
]
|
|
|
|
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
|
|
new_checkpoint[
|
|
f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"
|
|
] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.weight"]
|
|
new_checkpoint[
|
|
f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"
|
|
] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.bias"]
|
|
|
|
paths = renew_vae_resnet_paths(resnets)
|
|
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
|
|
assign_to_checkpoint(
|
|
paths,
|
|
new_checkpoint,
|
|
vae_state_dict,
|
|
additional_replacements=[meta_path],
|
|
config=config,
|
|
)
|
|
|
|
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
|
|
num_mid_res_blocks = 2
|
|
for i in range(1, num_mid_res_blocks + 1):
|
|
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
|
|
|
|
paths = renew_vae_resnet_paths(resnets)
|
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
|
assign_to_checkpoint(
|
|
paths,
|
|
new_checkpoint,
|
|
vae_state_dict,
|
|
additional_replacements=[meta_path],
|
|
config=config,
|
|
)
|
|
|
|
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
|
|
paths = renew_vae_attention_paths(mid_attentions)
|
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
|
assign_to_checkpoint(
|
|
paths,
|
|
new_checkpoint,
|
|
vae_state_dict,
|
|
additional_replacements=[meta_path],
|
|
config=config,
|
|
)
|
|
conv_attn_to_linear(new_checkpoint)
|
|
return new_checkpoint
|
|
|
|
|
|
def convert_ldm_bert_checkpoint(checkpoint, config):
|
|
def _copy_attn_layer(hf_attn_layer, pt_attn_layer):
|
|
hf_attn_layer.q_proj.weight.data = pt_attn_layer.to_q.weight
|
|
hf_attn_layer.k_proj.weight.data = pt_attn_layer.to_k.weight
|
|
hf_attn_layer.v_proj.weight.data = pt_attn_layer.to_v.weight
|
|
|
|
hf_attn_layer.out_proj.weight = pt_attn_layer.to_out.weight
|
|
hf_attn_layer.out_proj.bias = pt_attn_layer.to_out.bias
|
|
|
|
def _copy_linear(hf_linear, pt_linear):
|
|
hf_linear.weight = pt_linear.weight
|
|
hf_linear.bias = pt_linear.bias
|
|
|
|
def _copy_layer(hf_layer, pt_layer):
|
|
# copy layer norms
|
|
_copy_linear(hf_layer.self_attn_layer_norm, pt_layer[0][0])
|
|
_copy_linear(hf_layer.final_layer_norm, pt_layer[1][0])
|
|
|
|
# copy attn
|
|
_copy_attn_layer(hf_layer.self_attn, pt_layer[0][1])
|
|
|
|
# copy MLP
|
|
pt_mlp = pt_layer[1][1]
|
|
_copy_linear(hf_layer.fc1, pt_mlp.net[0][0])
|
|
_copy_linear(hf_layer.fc2, pt_mlp.net[2])
|
|
|
|
def _copy_layers(hf_layers, pt_layers):
|
|
for i, hf_layer in enumerate(hf_layers):
|
|
if i != 0:
|
|
i += i
|
|
pt_layer = pt_layers[i : i + 2]
|
|
_copy_layer(hf_layer, pt_layer)
|
|
|
|
hf_model = LDMBertModel(config).eval()
|
|
|
|
# copy embeds
|
|
hf_model.model.embed_tokens.weight = checkpoint.transformer.token_emb.weight
|
|
hf_model.model.embed_positions.weight.data = (
|
|
checkpoint.transformer.pos_emb.emb.weight
|
|
)
|
|
|
|
# copy layer norm
|
|
_copy_linear(hf_model.model.layer_norm, checkpoint.transformer.norm)
|
|
|
|
# copy hidden layers
|
|
_copy_layers(hf_model.model.layers, checkpoint.transformer.attn_layers.layers)
|
|
|
|
_copy_linear(hf_model.to_logits, checkpoint.transformer.to_logits)
|
|
|
|
return hf_model
|
|
|
|
|
|
def convert_ldm_clip_checkpoint(checkpoint):
|
|
text_model = CLIPTextModel.from_pretrained(
|
|
"openai/clip-vit-large-patch14", cache_dir=global_cache_dir("hub")
|
|
)
|
|
|
|
keys = list(checkpoint.keys())
|
|
|
|
text_model_dict = {}
|
|
|
|
for key in keys:
|
|
if key.startswith("cond_stage_model.transformer"):
|
|
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[
|
|
key
|
|
]
|
|
|
|
text_model.load_state_dict(text_model_dict)
|
|
|
|
return text_model
|
|
|
|
|
|
textenc_conversion_lst = [
|
|
(
|
|
"cond_stage_model.model.positional_embedding",
|
|
"text_model.embeddings.position_embedding.weight",
|
|
),
|
|
(
|
|
"cond_stage_model.model.token_embedding.weight",
|
|
"text_model.embeddings.token_embedding.weight",
|
|
),
|
|
("cond_stage_model.model.ln_final.weight", "text_model.final_layer_norm.weight"),
|
|
("cond_stage_model.model.ln_final.bias", "text_model.final_layer_norm.bias"),
|
|
]
|
|
textenc_conversion_map = {x[0]: x[1] for x in textenc_conversion_lst}
|
|
|
|
textenc_transformer_conversion_lst = [
|
|
# (stable-diffusion, HF Diffusers)
|
|
("resblocks.", "text_model.encoder.layers."),
|
|
("ln_1", "layer_norm1"),
|
|
("ln_2", "layer_norm2"),
|
|
(".c_fc.", ".fc1."),
|
|
(".c_proj.", ".fc2."),
|
|
(".attn", ".self_attn"),
|
|
("ln_final.", "transformer.text_model.final_layer_norm."),
|
|
(
|
|
"token_embedding.weight",
|
|
"transformer.text_model.embeddings.token_embedding.weight",
|
|
),
|
|
(
|
|
"positional_embedding",
|
|
"transformer.text_model.embeddings.position_embedding.weight",
|
|
),
|
|
]
|
|
protected = {re.escape(x[0]): x[1] for x in textenc_transformer_conversion_lst}
|
|
textenc_pattern = re.compile("|".join(protected.keys()))
|
|
|
|
|
|
def convert_paint_by_example_checkpoint(checkpoint):
|
|
cache_dir = global_cache_dir("hub")
|
|
config = CLIPVisionConfig.from_pretrained(
|
|
"openai/clip-vit-large-patch14", cache_dir=cache_dir
|
|
)
|
|
model = PaintByExampleImageEncoder(config)
|
|
|
|
keys = list(checkpoint.keys())
|
|
|
|
text_model_dict = {}
|
|
|
|
for key in keys:
|
|
if key.startswith("cond_stage_model.transformer"):
|
|
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[
|
|
key
|
|
]
|
|
|
|
# load clip vision
|
|
model.model.load_state_dict(text_model_dict)
|
|
|
|
# load mapper
|
|
keys_mapper = {
|
|
k[len("cond_stage_model.mapper.res") :]: v
|
|
for k, v in checkpoint.items()
|
|
if k.startswith("cond_stage_model.mapper")
|
|
}
|
|
|
|
MAPPING = {
|
|
"attn.c_qkv": ["attn1.to_q", "attn1.to_k", "attn1.to_v"],
|
|
"attn.c_proj": ["attn1.to_out.0"],
|
|
"ln_1": ["norm1"],
|
|
"ln_2": ["norm3"],
|
|
"mlp.c_fc": ["ff.net.0.proj"],
|
|
"mlp.c_proj": ["ff.net.2"],
|
|
}
|
|
|
|
mapped_weights = {}
|
|
for key, value in keys_mapper.items():
|
|
prefix = key[: len("blocks.i")]
|
|
suffix = key.split(prefix)[-1].split(".")[-1]
|
|
name = key.split(prefix)[-1].split(suffix)[0][1:-1]
|
|
mapped_names = MAPPING[name]
|
|
|
|
num_splits = len(mapped_names)
|
|
for i, mapped_name in enumerate(mapped_names):
|
|
new_name = ".".join([prefix, mapped_name, suffix])
|
|
shape = value.shape[0] // num_splits
|
|
mapped_weights[new_name] = value[i * shape : (i + 1) * shape]
|
|
|
|
model.mapper.load_state_dict(mapped_weights)
|
|
|
|
# load final layer norm
|
|
model.final_layer_norm.load_state_dict(
|
|
{
|
|
"bias": checkpoint["cond_stage_model.final_ln.bias"],
|
|
"weight": checkpoint["cond_stage_model.final_ln.weight"],
|
|
}
|
|
)
|
|
|
|
# load final proj
|
|
model.proj_out.load_state_dict(
|
|
{
|
|
"bias": checkpoint["proj_out.bias"],
|
|
"weight": checkpoint["proj_out.weight"],
|
|
}
|
|
)
|
|
|
|
# load uncond vector
|
|
model.uncond_vector.data = torch.nn.Parameter(checkpoint["learnable_vector"])
|
|
return model
|
|
|
|
|
|
def convert_open_clip_checkpoint(checkpoint):
|
|
cache_dir = global_cache_dir("hub")
|
|
text_model = CLIPTextModel.from_pretrained(
|
|
"stabilityai/stable-diffusion-2", subfolder="text_encoder", cache_dir=cache_dir
|
|
)
|
|
|
|
keys = list(checkpoint.keys())
|
|
|
|
text_model_dict = {}
|
|
|
|
if "cond_stage_model.model.text_projection" in keys:
|
|
d_model = int(checkpoint["cond_stage_model.model.text_projection"].shape[0])
|
|
elif "cond_stage_model.model.ln_final.bias" in keys:
|
|
d_model = int(checkpoint["cond_stage_model.model.ln_final.bias"].shape[0])
|
|
else:
|
|
raise KeyError(
|
|
'Expected key "cond_stage_model.model.text_projection" not found in model'
|
|
)
|
|
|
|
text_model_dict[
|
|
"text_model.embeddings.position_ids"
|
|
] = text_model.text_model.embeddings.get_buffer("position_ids")
|
|
|
|
for key in keys:
|
|
if (
|
|
"resblocks.23" in key
|
|
): # Diffusers drops the final layer and only uses the penultimate layer
|
|
continue
|
|
if key in textenc_conversion_map:
|
|
text_model_dict[textenc_conversion_map[key]] = checkpoint[key]
|
|
if key.startswith("cond_stage_model.model.transformer."):
|
|
new_key = key[len("cond_stage_model.model.transformer.") :]
|
|
if new_key.endswith(".in_proj_weight"):
|
|
new_key = new_key[: -len(".in_proj_weight")]
|
|
new_key = textenc_pattern.sub(
|
|
lambda m: protected[re.escape(m.group(0))], new_key
|
|
)
|
|
text_model_dict[new_key + ".q_proj.weight"] = checkpoint[key][
|
|
:d_model, :
|
|
]
|
|
text_model_dict[new_key + ".k_proj.weight"] = checkpoint[key][
|
|
d_model : d_model * 2, :
|
|
]
|
|
text_model_dict[new_key + ".v_proj.weight"] = checkpoint[key][
|
|
d_model * 2 :, :
|
|
]
|
|
elif new_key.endswith(".in_proj_bias"):
|
|
new_key = new_key[: -len(".in_proj_bias")]
|
|
new_key = textenc_pattern.sub(
|
|
lambda m: protected[re.escape(m.group(0))], new_key
|
|
)
|
|
text_model_dict[new_key + ".q_proj.bias"] = checkpoint[key][:d_model]
|
|
text_model_dict[new_key + ".k_proj.bias"] = checkpoint[key][
|
|
d_model : d_model * 2
|
|
]
|
|
text_model_dict[new_key + ".v_proj.bias"] = checkpoint[key][
|
|
d_model * 2 :
|
|
]
|
|
else:
|
|
new_key = textenc_pattern.sub(
|
|
lambda m: protected[re.escape(m.group(0))], new_key
|
|
)
|
|
|
|
text_model_dict[new_key] = checkpoint[key]
|
|
|
|
text_model.load_state_dict(text_model_dict)
|
|
|
|
return text_model
|
|
|
|
def replace_checkpoint_vae(checkpoint, vae_path:str):
|
|
if vae_path.endswith(".safetensors"):
|
|
vae_ckpt = load_file(vae_path)
|
|
else:
|
|
vae_ckpt = torch.load(vae_path, map_location="cpu")
|
|
state_dict = vae_ckpt['state_dict'] if "state_dict" in vae_ckpt else vae_ckpt
|
|
for vae_key in state_dict:
|
|
new_key = f'first_stage_model.{vae_key}'
|
|
checkpoint[new_key] = state_dict[vae_key]
|
|
|
|
def load_pipeline_from_original_stable_diffusion_ckpt(
|
|
checkpoint_path: str,
|
|
original_config_file: str = None,
|
|
num_in_channels: int = None,
|
|
scheduler_type: str = "pndm",
|
|
pipeline_type: str = None,
|
|
image_size: int = None,
|
|
prediction_type: str = None,
|
|
extract_ema: bool = True,
|
|
upcast_attn: bool = False,
|
|
vae: AutoencoderKL = None,
|
|
vae_path: str = None,
|
|
precision: torch.dtype = torch.float32,
|
|
return_generator_pipeline: bool = False,
|
|
scan_needed:bool=True,
|
|
) -> Union[StableDiffusionPipeline, StableDiffusionGeneratorPipeline]:
|
|
"""
|
|
Load a Stable Diffusion pipeline object from a CompVis-style `.ckpt`/`.safetensors` file and (ideally) a `.yaml`
|
|
config file.
|
|
|
|
Although many of the arguments can be automatically inferred, some of these rely on brittle checks against the
|
|
global step count, which will likely fail for models that have undergone further fine-tuning. Therefore, it is
|
|
recommended that you override the default values and/or supply an `original_config_file` wherever possible.
|
|
|
|
:param checkpoint_path: Path to `.ckpt` file.
|
|
:param original_config_file: Path to `.yaml` config file corresponding to the original architecture.
|
|
If `None`, will be automatically inferred by looking for a key that only exists in SD2.0 models.
|
|
:param image_size: The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Diffusion v2
|
|
Base. Use 768 for Stable Diffusion v2.
|
|
:param prediction_type: The prediction type that the model was trained on. Use `'epsilon'` for Stable Diffusion
|
|
v1.X and Stable Diffusion v2 Base. Use `'v-prediction'` for Stable Diffusion v2.
|
|
:param num_in_channels: The number of input channels. If `None` number of input channels will be automatically
|
|
inferred.
|
|
:param scheduler_type: Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler",
|
|
"euler-ancestral", "dpm", "ddim"]`. :param model_type: The pipeline type. `None` to automatically infer, or one of
|
|
`["FrozenOpenCLIPEmbedder", "FrozenCLIPEmbedder", "PaintByExample"]`. :param extract_ema: Only relevant for
|
|
checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights
|
|
or not. Defaults to `False`. Pass `True` to extract the EMA weights. EMA weights usually yield higher
|
|
quality images for inference. Non-EMA weights are usually better to continue fine-tuning.
|
|
:param precision: precision to use - torch.float16, torch.float32 or torch.autocast
|
|
:param upcast_attention: Whether the attention computation should always be upcasted. This is necessary when
|
|
running stable diffusion 2.1.
|
|
:param vae: A diffusers VAE to load into the pipeline.
|
|
:param vae_path: Path to a checkpoint VAE that will be converted into diffusers and loaded into the pipeline.
|
|
"""
|
|
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
verbosity = dlogging.get_verbosity()
|
|
dlogging.set_verbosity_error()
|
|
|
|
if Path(checkpoint_path).suffix == '.ckpt':
|
|
if scan_needed:
|
|
ModelManager.scan_model(checkpoint_path,checkpoint_path)
|
|
checkpoint = torch.load(checkpoint_path)
|
|
else:
|
|
checkpoint = load_file(checkpoint_path)
|
|
|
|
cache_dir = global_cache_dir("hub")
|
|
pipeline_class = (
|
|
StableDiffusionGeneratorPipeline
|
|
if return_generator_pipeline
|
|
else StableDiffusionPipeline
|
|
)
|
|
|
|
# Sometimes models don't have the global_step item
|
|
if "global_step" in checkpoint:
|
|
global_step = checkpoint["global_step"]
|
|
else:
|
|
print(" | global_step key not found in model")
|
|
global_step = None
|
|
|
|
# sometimes there is a state_dict key and sometimes not
|
|
if "state_dict" in checkpoint:
|
|
checkpoint = checkpoint["state_dict"]
|
|
|
|
upcast_attention = False
|
|
if original_config_file is None:
|
|
model_type = ModelManager.probe_model_type(checkpoint)
|
|
|
|
if model_type == SDLegacyType.V2_v:
|
|
original_config_file = (
|
|
global_config_dir() / "stable-diffusion" / "v2-inference-v.yaml"
|
|
)
|
|
if global_step == 110000:
|
|
# v2.1 needs to upcast attention
|
|
upcast_attention = True
|
|
elif model_type == SDLegacyType.V2_e:
|
|
original_config_file = (
|
|
global_config_dir() / "stable-diffusion" / "v2-inference.yaml"
|
|
)
|
|
elif model_type == SDLegacyType.V1_INPAINT:
|
|
original_config_file = (
|
|
global_config_dir()
|
|
/ "stable-diffusion"
|
|
/ "v1-inpainting-inference.yaml"
|
|
)
|
|
|
|
elif model_type == SDLegacyType.V1:
|
|
original_config_file = (
|
|
global_config_dir() / "stable-diffusion" / "v1-inference.yaml"
|
|
)
|
|
|
|
else:
|
|
raise Exception("Unknown checkpoint type")
|
|
|
|
original_config = OmegaConf.load(original_config_file)
|
|
|
|
if num_in_channels is not None:
|
|
original_config["model"]["params"]["unet_config"]["params"][
|
|
"in_channels"
|
|
] = num_in_channels
|
|
|
|
if (
|
|
"parameterization" in original_config["model"]["params"]
|
|
and original_config["model"]["params"]["parameterization"] == "v"
|
|
):
|
|
if prediction_type is None:
|
|
# NOTE: For stable diffusion 2 base it is recommended to pass `prediction_type=="epsilon"`
|
|
# as it relies on a brittle global step parameter here
|
|
prediction_type = "epsilon" if global_step == 875000 else "v_prediction"
|
|
if image_size is None:
|
|
# NOTE: For stable diffusion 2 base one has to pass `image_size==512`
|
|
# as it relies on a brittle global step parameter here
|
|
image_size = 512 if global_step == 875000 else 768
|
|
else:
|
|
if prediction_type is None:
|
|
prediction_type = "epsilon"
|
|
if image_size is None:
|
|
image_size = 512
|
|
|
|
num_train_timesteps = original_config.model.params.timesteps
|
|
beta_start = original_config.model.params.linear_start
|
|
beta_end = original_config.model.params.linear_end
|
|
|
|
scheduler = DDIMScheduler(
|
|
beta_end=beta_end,
|
|
beta_schedule="scaled_linear",
|
|
beta_start=beta_start,
|
|
num_train_timesteps=num_train_timesteps,
|
|
steps_offset=1,
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
prediction_type=prediction_type,
|
|
)
|
|
# make sure scheduler works correctly with DDIM
|
|
scheduler.register_to_config(clip_sample=False)
|
|
|
|
if scheduler_type == "pndm":
|
|
config = dict(scheduler.config)
|
|
config["skip_prk_steps"] = True
|
|
scheduler = PNDMScheduler.from_config(config)
|
|
elif scheduler_type == "lms":
|
|
scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
|
|
elif scheduler_type == "heun":
|
|
scheduler = HeunDiscreteScheduler.from_config(scheduler.config)
|
|
elif scheduler_type == "euler":
|
|
scheduler = EulerDiscreteScheduler.from_config(scheduler.config)
|
|
elif scheduler_type == "euler-ancestral":
|
|
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config)
|
|
elif scheduler_type == "dpm":
|
|
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config)
|
|
elif scheduler_type == "ddim":
|
|
scheduler = scheduler
|
|
else:
|
|
raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!")
|
|
|
|
# Convert the UNet2DConditionModel model.
|
|
unet_config = create_unet_diffusers_config(
|
|
original_config, image_size=image_size
|
|
)
|
|
unet_config["upcast_attention"] = upcast_attention
|
|
unet = UNet2DConditionModel(**unet_config)
|
|
|
|
converted_unet_checkpoint = convert_ldm_unet_checkpoint(
|
|
checkpoint, unet_config, path=checkpoint_path, extract_ema=extract_ema
|
|
)
|
|
|
|
unet.load_state_dict(converted_unet_checkpoint)
|
|
|
|
# If a replacement VAE path was specified, we'll incorporate that into
|
|
# the checkpoint model and then convert it
|
|
if vae_path:
|
|
print(f" | Converting VAE {vae_path}")
|
|
replace_checkpoint_vae(checkpoint,vae_path)
|
|
# otherwise we use the original VAE, provided that
|
|
# an externally loaded diffusers VAE was not passed
|
|
elif not vae:
|
|
print(" | Using checkpoint model's original VAE")
|
|
|
|
if vae:
|
|
print(" | Using replacement diffusers VAE")
|
|
else: # convert the original or replacement VAE
|
|
vae_config = create_vae_diffusers_config(
|
|
original_config, image_size=image_size
|
|
)
|
|
converted_vae_checkpoint = convert_ldm_vae_checkpoint(
|
|
checkpoint, vae_config
|
|
)
|
|
|
|
vae = AutoencoderKL(**vae_config)
|
|
vae.load_state_dict(converted_vae_checkpoint)
|
|
|
|
# Convert the text model.
|
|
model_type = pipeline_type
|
|
if model_type is None:
|
|
model_type = original_config.model.params.cond_stage_config.target.split(
|
|
"."
|
|
)[-1]
|
|
|
|
if model_type == "FrozenOpenCLIPEmbedder":
|
|
text_model = convert_open_clip_checkpoint(checkpoint)
|
|
tokenizer = CLIPTokenizer.from_pretrained(
|
|
"stabilityai/stable-diffusion-2",
|
|
subfolder="tokenizer",
|
|
cache_dir=cache_dir,
|
|
)
|
|
pipe = pipeline_class(
|
|
vae=vae,
|
|
text_encoder=text_model,
|
|
tokenizer=tokenizer,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
safety_checker=None,
|
|
feature_extractor=None,
|
|
requires_safety_checker=False,
|
|
)
|
|
elif model_type == "PaintByExample":
|
|
vision_model = convert_paint_by_example_checkpoint(checkpoint)
|
|
tokenizer = CLIPTokenizer.from_pretrained(
|
|
"openai/clip-vit-large-patch14", cache_dir=cache_dir
|
|
)
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
|
"CompVis/stable-diffusion-safety-checker", cache_dir=cache_dir
|
|
)
|
|
pipe = PaintByExamplePipeline(
|
|
vae=vae,
|
|
image_encoder=vision_model,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
safety_checker=None,
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
elif model_type in ["FrozenCLIPEmbedder", "WeightedFrozenCLIPEmbedder"]:
|
|
text_model = convert_ldm_clip_checkpoint(checkpoint)
|
|
tokenizer = CLIPTokenizer.from_pretrained(
|
|
"openai/clip-vit-large-patch14", cache_dir=cache_dir
|
|
)
|
|
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
|
"CompVis/stable-diffusion-safety-checker",
|
|
cache_dir=global_cache_dir("hub"),
|
|
)
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
|
"CompVis/stable-diffusion-safety-checker", cache_dir=cache_dir
|
|
)
|
|
pipe = pipeline_class(
|
|
vae=vae.to(precision),
|
|
text_encoder=text_model.to(precision),
|
|
tokenizer=tokenizer,
|
|
unet=unet.to(precision),
|
|
scheduler=scheduler,
|
|
safety_checker=None if return_generator_pipeline else safety_checker.to(precision),
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
else:
|
|
text_config = create_ldm_bert_config(original_config)
|
|
text_model = convert_ldm_bert_checkpoint(checkpoint, text_config)
|
|
tokenizer = BertTokenizerFast.from_pretrained(
|
|
"bert-base-uncased", cache_dir=cache_dir
|
|
)
|
|
pipe = LDMTextToImagePipeline(
|
|
vqvae=vae,
|
|
bert=text_model,
|
|
tokenizer=tokenizer,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
)
|
|
dlogging.set_verbosity(verbosity)
|
|
|
|
return pipe
|
|
|
|
|
|
def convert_ckpt_to_diffusers(
|
|
checkpoint_path: Union[str, Path],
|
|
dump_path: Union[str, Path],
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Takes all the arguments of load_pipeline_from_original_stable_diffusion_ckpt(),
|
|
and in addition a path-like object indicating the location of the desired diffusers
|
|
model to be written.
|
|
"""
|
|
pipe = load_pipeline_from_original_stable_diffusion_ckpt(checkpoint_path, **kwargs)
|
|
|
|
pipe.save_pretrained(
|
|
dump_path,
|
|
safe_serialization=is_safetensors_available(),
|
|
)
|