InvokeAI/invokeai/app/invocations/model.py
psychedelicious ddde355b09 fix(mm): add ui_type to model fields
Recently the schema for models was changed to a generic `ModelField`, and the UI was unable to derive the type of those fields. This didn't affect functionality, but it did break the styling of handles.

Add `ui_type` to the affected fields and update the UI to use the correct capitalizations.
2024-03-08 11:10:44 -05:00

349 lines
12 KiB
Python

import copy
from typing import List, Optional
from pydantic import BaseModel, Field
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.model_manager.config import SubModelType
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
class ModelField(BaseModel):
key: str = Field(description="Key of the model")
submodel_type: Optional[SubModelType] = Field(description="Submodel type", default=None)
class LoRAField(BaseModel):
lora: ModelField = Field(description="Info to load lora model")
weight: float = Field(description="Weight to apply to lora model")
class UNetField(BaseModel):
unet: ModelField = Field(description="Info to load unet submodel")
scheduler: ModelField = Field(description="Info to load scheduler submodel")
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
freeu_config: Optional[FreeUConfig] = Field(default=None, description="FreeU configuration")
class CLIPField(BaseModel):
tokenizer: ModelField = Field(description="Info to load tokenizer submodel")
text_encoder: ModelField = Field(description="Info to load text_encoder submodel")
skipped_layers: int = Field(description="Number of skipped layers in text_encoder")
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
class VAEField(BaseModel):
vae: ModelField = Field(description="Info to load vae submodel")
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
@invocation_output("unet_output")
class UNetOutput(BaseInvocationOutput):
"""Base class for invocations that output a UNet field."""
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
@invocation_output("vae_output")
class VAEOutput(BaseInvocationOutput):
"""Base class for invocations that output a VAE field"""
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation_output("clip_output")
class CLIPOutput(BaseInvocationOutput):
"""Base class for invocations that output a CLIP field"""
clip: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP")
@invocation_output("model_loader_output")
class ModelLoaderOutput(UNetOutput, CLIPOutput, VAEOutput):
"""Model loader output"""
pass
@invocation(
"main_model_loader",
title="Main Model",
tags=["model"],
category="model",
version="1.0.1",
)
class MainModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels."""
model: ModelField = InputField(description=FieldDescriptions.main_model, input=Input.Direct, ui_type=UIType.MainModel)
# TODO: precision?
def invoke(self, context: InvocationContext) -> ModelLoaderOutput:
# TODO: not found exceptions
if not context.models.exists(self.model.key):
raise Exception(f"Unknown model {self.model.key}")
unet = self.model.model_copy(update={"submodel_type": SubModelType.UNet})
scheduler = self.model.model_copy(update={"submodel_type": SubModelType.Scheduler})
tokenizer = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
text_encoder = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
vae = self.model.model_copy(update={"submodel_type": SubModelType.VAE})
return ModelLoaderOutput(
unet=UNetField(unet=unet, scheduler=scheduler, loras=[]),
clip=CLIPField(tokenizer=tokenizer, text_encoder=text_encoder, loras=[], skipped_layers=0),
vae=VAEField(vae=vae),
)
@invocation_output("lora_loader_output")
class LoRALoaderOutput(BaseInvocationOutput):
"""Model loader output"""
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
clip: Optional[CLIPField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
@invocation("lora_loader", title="LoRA", tags=["model"], category="model", version="1.0.1")
class LoRALoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
lora: ModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA", ui_type=UIType.LoRAModel)
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
unet: Optional[UNetField] = InputField(
default=None,
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
)
clip: Optional[CLIPField] = InputField(
default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP",
)
def invoke(self, context: InvocationContext) -> LoRALoaderOutput:
lora_key = self.lora.key
if not context.models.exists(lora_key):
raise Exception(f"Unkown lora: {lora_key}!")
if self.unet is not None and any(lora.lora.key == lora_key for lora in self.unet.loras):
raise Exception(f'LoRA "{lora_key}" already applied to unet')
if self.clip is not None and any(lora.lora.key == lora_key for lora in self.clip.loras):
raise Exception(f'LoRA "{lora_key}" already applied to clip')
output = LoRALoaderOutput()
if self.unet is not None:
output.unet = self.unet.model_copy(deep=True)
output.unet.loras.append(
LoRAField(
lora=self.lora,
weight=self.weight,
)
)
if self.clip is not None:
output.clip = self.clip.model_copy(deep=True)
output.clip.loras.append(
LoRAField(
lora=self.lora,
weight=self.weight,
)
)
return output
@invocation_output("sdxl_lora_loader_output")
class SDXLLoRALoaderOutput(BaseInvocationOutput):
"""SDXL LoRA Loader Output"""
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
clip: Optional[CLIPField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 1")
clip2: Optional[CLIPField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 2")
@invocation(
"sdxl_lora_loader",
title="SDXL LoRA",
tags=["lora", "model"],
category="model",
version="1.0.1",
)
class SDXLLoRALoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
lora: ModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA", ui_type=UIType.LoRAModel)
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
unet: Optional[UNetField] = InputField(
default=None,
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
)
clip: Optional[CLIPField] = InputField(
default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP 1",
)
clip2: Optional[CLIPField] = InputField(
default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP 2",
)
def invoke(self, context: InvocationContext) -> SDXLLoRALoaderOutput:
lora_key = self.lora.key
if not context.models.exists(lora_key):
raise Exception(f"Unknown lora: {lora_key}!")
if self.unet is not None and any(lora.lora.key == lora_key for lora in self.unet.loras):
raise Exception(f'LoRA "{lora_key}" already applied to unet')
if self.clip is not None and any(lora.lora.key == lora_key for lora in self.clip.loras):
raise Exception(f'LoRA "{lora_key}" already applied to clip')
if self.clip2 is not None and any(lora.lora.key == lora_key for lora in self.clip2.loras):
raise Exception(f'LoRA "{lora_key}" already applied to clip2')
output = SDXLLoRALoaderOutput()
if self.unet is not None:
output.unet = self.unet.model_copy(deep=True)
output.unet.loras.append(
LoRAField(
lora=self.lora,
weight=self.weight,
)
)
if self.clip is not None:
output.clip = self.clip.model_copy(deep=True)
output.clip.loras.append(
LoRAField(
lora=self.lora,
weight=self.weight,
)
)
if self.clip2 is not None:
output.clip2 = self.clip2.model_copy(deep=True)
output.clip2.loras.append(
LoRAField(
lora=self.lora,
weight=self.weight,
)
)
return output
@invocation("vae_loader", title="VAE", tags=["vae", "model"], category="model", version="1.0.1")
class VAELoaderInvocation(BaseInvocation):
"""Loads a VAE model, outputting a VaeLoaderOutput"""
vae_model: ModelField = InputField(
description=FieldDescriptions.vae_model,
input=Input.Direct,
title="VAE",
ui_type=UIType.VAEModel
)
def invoke(self, context: InvocationContext) -> VAEOutput:
key = self.vae_model.key
if not context.models.exists(key):
raise Exception(f"Unkown vae: {key}!")
return VAEOutput(vae=VAEField(vae=self.vae_model))
@invocation_output("seamless_output")
class SeamlessModeOutput(BaseInvocationOutput):
"""Modified Seamless Model output"""
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
vae: Optional[VAEField] = OutputField(default=None, description=FieldDescriptions.vae, title="VAE")
@invocation(
"seamless",
title="Seamless",
tags=["seamless", "model"],
category="model",
version="1.0.0",
)
class SeamlessModeInvocation(BaseInvocation):
"""Applies the seamless transformation to the Model UNet and VAE."""
unet: Optional[UNetField] = InputField(
default=None,
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
)
vae: Optional[VAEField] = InputField(
default=None,
description=FieldDescriptions.vae_model,
input=Input.Connection,
title="VAE",
)
seamless_y: bool = InputField(default=True, input=Input.Any, description="Specify whether Y axis is seamless")
seamless_x: bool = InputField(default=True, input=Input.Any, description="Specify whether X axis is seamless")
def invoke(self, context: InvocationContext) -> SeamlessModeOutput:
# Conditionally append 'x' and 'y' based on seamless_x and seamless_y
unet = copy.deepcopy(self.unet)
vae = copy.deepcopy(self.vae)
seamless_axes_list = []
if self.seamless_x:
seamless_axes_list.append("x")
if self.seamless_y:
seamless_axes_list.append("y")
if unet is not None:
unet.seamless_axes = seamless_axes_list
if vae is not None:
vae.seamless_axes = seamless_axes_list
return SeamlessModeOutput(unet=unet, vae=vae)
@invocation("freeu", title="FreeU", tags=["freeu"], category="unet", version="1.0.0")
class FreeUInvocation(BaseInvocation):
"""
Applies FreeU to the UNet. Suggested values (b1/b2/s1/s2):
SD1.5: 1.2/1.4/0.9/0.2,
SD2: 1.1/1.2/0.9/0.2,
SDXL: 1.1/1.2/0.6/0.4,
"""
unet: UNetField = InputField(description=FieldDescriptions.unet, input=Input.Connection, title="UNet")
b1: float = InputField(default=1.2, ge=-1, le=3, description=FieldDescriptions.freeu_b1)
b2: float = InputField(default=1.4, ge=-1, le=3, description=FieldDescriptions.freeu_b2)
s1: float = InputField(default=0.9, ge=-1, le=3, description=FieldDescriptions.freeu_s1)
s2: float = InputField(default=0.2, ge=-1, le=3, description=FieldDescriptions.freeu_s2)
def invoke(self, context: InvocationContext) -> UNetOutput:
self.unet.freeu_config = FreeUConfig(s1=self.s1, s2=self.s2, b1=self.b1, b2=self.b2)
return UNetOutput(unet=self.unet)