InvokeAI/scripts/dream.py
Lincoln Stein decd1a58d2 Merge branch 'escape-single-quotes' into main
This prevents single quotes in the prompt from generating a parse error.
2022-08-24 11:21:09 -04:00

389 lines
14 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
import argparse
import shlex
import atexit
import os
import sys
from PIL import Image,PngImagePlugin
# readline unavailable on windows systems
try:
import readline
readline_available = True
except:
readline_available = False
debugging = False
def main():
''' Initialize command-line parsers and the diffusion model '''
arg_parser = create_argv_parser()
opt = arg_parser.parse_args()
if opt.laion400m:
# defaults suitable to the older latent diffusion weights
width = 256
height = 256
config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml"
weights = "models/ldm/text2img-large/model.ckpt"
else:
# some defaults suitable for stable diffusion weights
width = 512
height = 512
config = "configs/stable-diffusion/v1-inference.yaml"
weights = "models/ldm/stable-diffusion-v1/model.ckpt"
# command line history will be stored in a file called "~/.dream_history"
if readline_available:
setup_readline()
print("* Initializing, be patient...\n")
sys.path.append('.')
from pytorch_lightning import logging
from ldm.simplet2i import T2I
# these two lines prevent a horrible warning message from appearing
# when the frozen CLIP tokenizer is imported
import transformers
transformers.logging.set_verbosity_error()
# creating a simple text2image object with a handful of
# defaults passed on the command line.
# additional parameters will be added (or overriden) during
# the user input loop
t2i = T2I(width=width,
height=height,
batch_size=opt.batch_size,
outdir=opt.outdir,
sampler_name=opt.sampler_name,
weights=weights,
full_precision=opt.full_precision,
config=config,
latent_diffusion_weights=opt.laion400m # this is solely for recreating the prompt
)
# make sure the output directory exists
if not os.path.exists(opt.outdir):
os.makedirs(opt.outdir)
# gets rid of annoying messages about random seed
logging.getLogger("pytorch_lightning").setLevel(logging.ERROR)
infile = None
try:
if opt.infile is not None:
infile = open(opt.infile,'r')
except FileNotFoundError as e:
print(e)
exit(-1)
# preload the model
if not debugging:
t2i.load_model()
print("\n* Initialization done! Awaiting your command (-h for help, 'q' to quit, 'cd' to change output dir, 'pwd' to print output dir)...")
log_path = os.path.join(opt.outdir,'dream_log.txt')
with open(log_path,'a') as log:
cmd_parser = create_cmd_parser()
main_loop(t2i,cmd_parser,log,infile)
log.close()
if infile:
infile.close()
def main_loop(t2i,parser,log,infile):
''' prompt/read/execute loop '''
done = False
while not done:
try:
command = infile.readline() if infile else input("dream> ")
except EOFError:
done = True
break
if infile and len(command)==0:
done = True
break
if command.startswith(('#','//')):
continue
# before splitting, escape single quotes so as not to mess
# up the parser
command = command.replace("'","\\'")
try:
elements = shlex.split(command)
except ValueError as e:
print(str(e))
continue
if len(elements)==0:
continue
if elements[0]=='q':
done = True
break
if elements[0]=='cd' and len(elements)>1:
if os.path.exists(elements[1]):
print(f"setting image output directory to {elements[1]}")
t2i.outdir=elements[1]
else:
print(f"directory {elements[1]} does not exist")
continue
if elements[0]=='pwd':
print(f"current output directory is {t2i.outdir}")
continue
if elements[0].startswith('!dream'): # in case a stored prompt still contains the !dream command
elements.pop(0)
# rearrange the arguments to mimic how it works in the Dream bot.
switches = ['']
switches_started = False
for el in elements:
if el[0]=='-' and not switches_started:
switches_started = True
if switches_started:
switches.append(el)
else:
switches[0] += el
switches[0] += ' '
switches[0] = switches[0][:len(switches[0])-1]
try:
opt = parser.parse_args(switches)
except SystemExit:
parser.print_help()
continue
if len(opt.prompt)==0:
print("Try again with a prompt!")
continue
try:
if opt.init_img is None:
results = t2i.txt2img(**vars(opt))
else:
results = t2i.img2img(**vars(opt))
except AssertionError as e:
print(e)
continue
print("Outputs:")
write_log_message(t2i,opt,results,log)
print("goodbye!")
def write_log_message(t2i,opt,results,logfile):
''' logs the name of the output image, its prompt and seed to the terminal, log file, and a Dream text chunk in the PNG metadata '''
switches = _reconstruct_switches(t2i,opt)
prompt_str = ' '.join(switches)
# when multiple images are produced in batch, then we keep track of where each starts
last_seed = None
img_num = 1
batch_size = opt.batch_size or t2i.batch_size
seenit = {}
seeds = [a[1] for a in results]
if batch_size > 1:
seeds = f"(seeds for each batch row: {seeds})"
else:
seeds = f"(seeds for individual images: {seeds})"
for r in results:
seed = r[1]
log_message = (f'{r[0]}: {prompt_str} -S{seed}')
if batch_size > 1:
if seed != last_seed:
img_num = 1
log_message += f' # (batch image {img_num} of {batch_size})'
else:
img_num += 1
log_message += f' # (batch image {img_num} of {batch_size})'
last_seed = seed
print(log_message)
logfile.write(log_message+"\n")
logfile.flush()
if r[0] not in seenit:
seenit[r[0]] = True
try:
if opt.grid:
_write_prompt_to_png(r[0],f'{prompt_str} -g -S{seed} {seeds}')
else:
_write_prompt_to_png(r[0],f'{prompt_str} -S{seed}')
except FileNotFoundError:
print(f"Could not open file '{r[0]}' for reading")
def _reconstruct_switches(t2i,opt):
'''Normalize the prompt and switches'''
switches = list()
switches.append(f'"{opt.prompt}"')
switches.append(f'-s{opt.steps or t2i.steps}')
switches.append(f'-b{opt.batch_size or t2i.batch_size}')
switches.append(f'-W{opt.width or t2i.width}')
switches.append(f'-H{opt.height or t2i.height}')
switches.append(f'-C{opt.cfg_scale or t2i.cfg_scale}')
switches.append(f'-m{t2i.sampler_name}')
if opt.init_img:
switches.append(f'-I{opt.init_img}')
if opt.strength and opt.init_img is not None:
switches.append(f'-f{opt.strength or t2i.strength}')
if t2i.full_precision:
switches.append('-F')
return switches
def _write_prompt_to_png(path,prompt):
info = PngImagePlugin.PngInfo()
info.add_text("Dream",prompt)
im = Image.open(path)
im.save(path,"PNG",pnginfo=info)
def create_argv_parser():
parser = argparse.ArgumentParser(description="Parse script's command line args")
parser.add_argument("--laion400m",
"--latent_diffusion",
"-l",
dest='laion400m',
action='store_true',
help="fallback to the latent diffusion (laion400m) weights and config")
parser.add_argument("--from_file",
dest='infile',
type=str,
help="if specified, load prompts from this file")
parser.add_argument('-n','--iterations',
type=int,
default=1,
help="number of images to generate")
parser.add_argument('-F','--full_precision',
dest='full_precision',
action='store_true',
help="use slower full precision math for calculations")
parser.add_argument('-b','--batch_size',
type=int,
default=1,
help="number of images to produce per iteration (faster, but doesn't generate individual seeds")
parser.add_argument('--sampler','-m',
dest="sampler_name",
choices=['ddim', 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a', 'k_euler', 'k_heun', 'k_lms', 'plms'],
default='k_lms',
help="which sampler to use (k_lms) - can only be set on command line")
parser.add_argument('--outdir',
'-o',
type=str,
default="outputs/img-samples",
help="directory in which to place generated images and a log of prompts and seeds")
return parser
def create_cmd_parser():
parser = argparse.ArgumentParser(description='Example: dream> a fantastic alien landscape -W1024 -H960 -s100 -n12')
parser.add_argument('prompt')
parser.add_argument('-s','--steps',type=int,help="number of steps")
parser.add_argument('-S','--seed',type=int,help="image seed")
parser.add_argument('-n','--iterations',type=int,default=1,help="number of samplings to perform (slower, but will provide seeds for individual images)")
parser.add_argument('-b','--batch_size',type=int,default=1,help="number of images to produce per sampling (will not provide seeds for individual images!)")
parser.add_argument('-W','--width',type=int,help="image width, multiple of 64")
parser.add_argument('-H','--height',type=int,help="image height, multiple of 64")
parser.add_argument('-C','--cfg_scale',default=7.5,type=float,help="prompt configuration scale")
parser.add_argument('-g','--grid',action='store_true',help="generate a grid")
parser.add_argument('-i','--individual',action='store_true',help="generate individual files (default)")
parser.add_argument('-I','--init_img',type=str,help="path to input image (supersedes width and height)")
parser.add_argument('-f','--strength',default=0.75,type=float,help="strength for noising/unnoising. 0.0 preserves image exactly, 1.0 replaces it completely")
parser.add_argument('-x','--skip_normalize',action='store_true',help="skip subprompt weight normalization")
return parser
if readline_available:
def setup_readline():
readline.set_completer(Completer(['cd','pwd',
'--steps','-s','--seed','-S','--iterations','-n','--batch_size','-b',
'--width','-W','--height','-H','--cfg_scale','-C','--grid','-g',
'--individual','-i','--init_img','-I','--strength','-f']).complete)
readline.set_completer_delims(" ")
readline.parse_and_bind('tab: complete')
load_history()
def load_history():
histfile = os.path.join(os.path.expanduser('~'),".dream_history")
try:
readline.read_history_file(histfile)
readline.set_history_length(1000)
except FileNotFoundError:
pass
atexit.register(readline.write_history_file,histfile)
class Completer():
def __init__(self,options):
self.options = sorted(options)
return
def complete(self,text,state):
buffer = readline.get_line_buffer()
if text.startswith(('-I','--init_img')):
return self._path_completions(text,state,('.png'))
if buffer.strip().endswith('cd') or text.startswith(('.','/')):
return self._path_completions(text,state,())
response = None
if state == 0:
# This is the first time for this text, so build a match list.
if text:
self.matches = [s
for s in self.options
if s and s.startswith(text)]
else:
self.matches = self.options[:]
# Return the state'th item from the match list,
# if we have that many.
try:
response = self.matches[state]
except IndexError:
response = None
return response
def _path_completions(self,text,state,extensions):
# get the path so far
if text.startswith('-I'):
path = text.replace('-I','',1).lstrip()
elif text.startswith('--init_img='):
path = text.replace('--init_img=','',1).lstrip()
else:
path = text
matches = list()
path = os.path.expanduser(path)
if len(path)==0:
matches.append(text+'./')
else:
dir = os.path.dirname(path)
dir_list = os.listdir(dir)
for n in dir_list:
if n.startswith('.') and len(n)>1:
continue
full_path = os.path.join(dir,n)
if full_path.startswith(path):
if os.path.isdir(full_path):
matches.append(os.path.join(os.path.dirname(text),n)+'/')
elif n.endswith(extensions):
matches.append(os.path.join(os.path.dirname(text),n))
try:
response = matches[state]
except IndexError:
response = None
return response
if __name__ == "__main__":
main()