mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
562 lines
26 KiB
Python
562 lines
26 KiB
Python
from __future__ import annotations
|
|
|
|
import math
|
|
from contextlib import nullcontext
|
|
from dataclasses import dataclass
|
|
from typing import Any, Callable, List, Optional, Union
|
|
|
|
import einops
|
|
import PIL.Image
|
|
import psutil
|
|
import torch
|
|
import torchvision.transforms as T
|
|
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
|
|
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
|
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipeline
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
|
from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
|
|
from diffusers.utils.import_utils import is_xformers_available
|
|
from pydantic import Field
|
|
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
|
|
|
from invokeai.app.services.config.config_default import get_config
|
|
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import IPAdapterData, TextConditioningData
|
|
from invokeai.backend.stable_diffusion.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
|
from invokeai.backend.stable_diffusion.diffusion.unet_attention_patcher import UNetAttentionPatcher, UNetIPAdapterData
|
|
from invokeai.backend.util.attention import auto_detect_slice_size
|
|
from invokeai.backend.util.devices import TorchDevice
|
|
from invokeai.backend.util.hotfixes import ControlNetModel
|
|
|
|
|
|
@dataclass
|
|
class PipelineIntermediateState:
|
|
step: int
|
|
order: int
|
|
total_steps: int
|
|
timestep: int
|
|
latents: torch.Tensor
|
|
predicted_original: Optional[torch.Tensor] = None
|
|
|
|
|
|
@dataclass
|
|
class AddsMaskGuidance:
|
|
mask: torch.Tensor
|
|
mask_latents: torch.Tensor
|
|
scheduler: SchedulerMixin
|
|
noise: torch.Tensor
|
|
is_gradient_mask: bool
|
|
|
|
def __call__(self, latents: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
|
return self.apply_mask(latents, t)
|
|
|
|
def apply_mask(self, latents: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
|
batch_size = latents.size(0)
|
|
mask = einops.repeat(self.mask, "b c h w -> (repeat b) c h w", repeat=batch_size)
|
|
if t.dim() == 0:
|
|
# some schedulers expect t to be one-dimensional.
|
|
# TODO: file diffusers bug about inconsistency?
|
|
t = einops.repeat(t, "-> batch", batch=batch_size)
|
|
# Noise shouldn't be re-randomized between steps here. The multistep schedulers
|
|
# get very confused about what is happening from step to step when we do that.
|
|
mask_latents = self.scheduler.add_noise(self.mask_latents, self.noise, t)
|
|
# TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already?
|
|
# mask_latents = self.scheduler.scale_model_input(mask_latents, t)
|
|
mask_latents = einops.repeat(mask_latents, "b c h w -> (repeat b) c h w", repeat=batch_size)
|
|
if self.is_gradient_mask:
|
|
threshhold = (t.item()) / self.scheduler.config.num_train_timesteps
|
|
mask_bool = mask > threshhold # I don't know when mask got inverted, but it did
|
|
masked_input = torch.where(mask_bool, latents, mask_latents)
|
|
else:
|
|
masked_input = torch.lerp(mask_latents.to(dtype=latents.dtype), latents, mask.to(dtype=latents.dtype))
|
|
return masked_input
|
|
|
|
|
|
def trim_to_multiple_of(*args, multiple_of=8):
|
|
return tuple((x - x % multiple_of) for x in args)
|
|
|
|
|
|
def image_resized_to_grid_as_tensor(image: PIL.Image.Image, normalize: bool = True, multiple_of=8) -> torch.FloatTensor:
|
|
"""
|
|
|
|
:param image: input image
|
|
:param normalize: scale the range to [-1, 1] instead of [0, 1]
|
|
:param multiple_of: resize the input so both dimensions are a multiple of this
|
|
"""
|
|
w, h = trim_to_multiple_of(*image.size, multiple_of=multiple_of)
|
|
transformation = T.Compose(
|
|
[
|
|
T.Resize((h, w), T.InterpolationMode.LANCZOS, antialias=True),
|
|
T.ToTensor(),
|
|
]
|
|
)
|
|
tensor = transformation(image)
|
|
if normalize:
|
|
tensor = tensor * 2.0 - 1.0
|
|
return tensor
|
|
|
|
|
|
def is_inpainting_model(unet: UNet2DConditionModel):
|
|
return unet.conv_in.in_channels == 9
|
|
|
|
|
|
@dataclass
|
|
class ControlNetData:
|
|
model: ControlNetModel = Field(default=None)
|
|
image_tensor: torch.Tensor = Field(default=None)
|
|
weight: Union[float, List[float]] = Field(default=1.0)
|
|
begin_step_percent: float = Field(default=0.0)
|
|
end_step_percent: float = Field(default=1.0)
|
|
control_mode: str = Field(default="balanced")
|
|
resize_mode: str = Field(default="just_resize")
|
|
|
|
|
|
@dataclass
|
|
class T2IAdapterData:
|
|
"""A structure containing the information required to apply conditioning from a single T2I-Adapter model."""
|
|
|
|
adapter_state: dict[torch.Tensor] = Field()
|
|
weight: Union[float, list[float]] = Field(default=1.0)
|
|
begin_step_percent: float = Field(default=0.0)
|
|
end_step_percent: float = Field(default=1.0)
|
|
|
|
|
|
class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
|
r"""
|
|
Pipeline for text-to-image generation using Stable Diffusion.
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|
|
|
Implementation note: This class started as a refactored copy of diffusers.StableDiffusionPipeline.
|
|
Hopefully future versions of diffusers provide access to more of these functions so that we don't
|
|
need to duplicate them here: https://github.com/huggingface/diffusers/issues/551#issuecomment-1281508384
|
|
|
|
Args:
|
|
vae ([`AutoencoderKL`]):
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
text_encoder ([`CLIPTextModel`]):
|
|
Frozen text-encoder. Stable Diffusion uses the text portion of
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
|
tokenizer (`CLIPTokenizer`):
|
|
Tokenizer of class
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
|
scheduler ([`SchedulerMixin`]):
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
|
safety_checker ([`StableDiffusionSafetyChecker`]):
|
|
Classification module that estimates whether generated images could be considered offensive or harmful.
|
|
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
|
feature_extractor ([`CLIPFeatureExtractor`]):
|
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
tokenizer: CLIPTokenizer,
|
|
unet: UNet2DConditionModel,
|
|
scheduler: KarrasDiffusionSchedulers,
|
|
safety_checker: Optional[StableDiffusionSafetyChecker],
|
|
feature_extractor: Optional[CLIPFeatureExtractor],
|
|
requires_safety_checker: bool = False,
|
|
):
|
|
super().__init__(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
safety_checker=safety_checker,
|
|
feature_extractor=feature_extractor,
|
|
requires_safety_checker=requires_safety_checker,
|
|
)
|
|
|
|
self.invokeai_diffuser = InvokeAIDiffuserComponent(self.unet, self._unet_forward)
|
|
|
|
def _adjust_memory_efficient_attention(self, latents: torch.Tensor):
|
|
"""
|
|
if xformers is available, use it, otherwise use sliced attention.
|
|
"""
|
|
config = get_config()
|
|
if config.attention_type == "xformers":
|
|
self.enable_xformers_memory_efficient_attention()
|
|
return
|
|
elif config.attention_type == "sliced":
|
|
slice_size = config.attention_slice_size
|
|
if slice_size == "auto":
|
|
slice_size = auto_detect_slice_size(latents)
|
|
elif slice_size == "balanced":
|
|
slice_size = "auto"
|
|
self.enable_attention_slicing(slice_size=slice_size)
|
|
return
|
|
elif config.attention_type == "normal":
|
|
self.disable_attention_slicing()
|
|
return
|
|
elif config.attention_type == "torch-sdp":
|
|
if hasattr(torch.nn.functional, "scaled_dot_product_attention"):
|
|
# diffusers enables sdp automatically
|
|
return
|
|
else:
|
|
raise Exception("torch-sdp attention slicing not available")
|
|
|
|
# the remainder if this code is called when attention_type=='auto'
|
|
if self.unet.device.type == "cuda":
|
|
if is_xformers_available():
|
|
self.enable_xformers_memory_efficient_attention()
|
|
return
|
|
elif hasattr(torch.nn.functional, "scaled_dot_product_attention"):
|
|
# diffusers enables sdp automatically
|
|
return
|
|
|
|
if self.unet.device.type == "cpu" or self.unet.device.type == "mps":
|
|
mem_free = psutil.virtual_memory().free
|
|
elif self.unet.device.type == "cuda":
|
|
mem_free, _ = torch.cuda.mem_get_info(TorchDevice.normalize(self.unet.device))
|
|
else:
|
|
raise ValueError(f"unrecognized device {self.unet.device}")
|
|
# input tensor of [1, 4, h/8, w/8]
|
|
# output tensor of [16, (h/8 * w/8), (h/8 * w/8)]
|
|
bytes_per_element_needed_for_baddbmm_duplication = latents.element_size() + 4
|
|
max_size_required_for_baddbmm = (
|
|
16
|
|
* latents.size(dim=2)
|
|
* latents.size(dim=3)
|
|
* latents.size(dim=2)
|
|
* latents.size(dim=3)
|
|
* bytes_per_element_needed_for_baddbmm_duplication
|
|
)
|
|
if max_size_required_for_baddbmm > (mem_free * 3.0 / 4.0): # 3.3 / 4.0 is from old Invoke code
|
|
self.enable_attention_slicing(slice_size="max")
|
|
elif torch.backends.mps.is_available():
|
|
# diffusers recommends always enabling for mps
|
|
self.enable_attention_slicing(slice_size="max")
|
|
else:
|
|
self.disable_attention_slicing()
|
|
|
|
def to(self, torch_device: Optional[Union[str, torch.device]] = None, silence_dtype_warnings=False):
|
|
raise Exception("Should not be called")
|
|
|
|
def add_inpainting_channels_to_latents(
|
|
self, latents: torch.Tensor, masked_ref_image_latents: torch.Tensor, inpainting_mask: torch.Tensor
|
|
):
|
|
"""Given a `latents` tensor, adds the mask and image latents channels required for inpainting.
|
|
|
|
Standard (non-inpainting) SD UNet models expect an input with shape (N, 4, H, W). Inpainting models expect an
|
|
input of shape (N, 9, H, W). The 9 channels are defined as follows:
|
|
- Channel 0-3: The latents being denoised.
|
|
- Channel 4: The mask indicating which parts of the image are being inpainted.
|
|
- Channel 5-8: The latent representation of the masked reference image being inpainted.
|
|
|
|
This function assumes that the same mask and base image should apply to all items in the batch.
|
|
"""
|
|
# Validate assumptions about input tensor shapes.
|
|
batch_size, latent_channels, latent_height, latent_width = latents.shape
|
|
assert latent_channels == 4
|
|
assert masked_ref_image_latents.shape == [1, 4, latent_height, latent_width]
|
|
assert inpainting_mask == [1, 1, latent_height, latent_width]
|
|
|
|
# Repeat original_image_latents and inpainting_mask to match the latents batch size.
|
|
original_image_latents = masked_ref_image_latents.expand(batch_size, -1, -1, -1)
|
|
inpainting_mask = inpainting_mask.expand(batch_size, -1, -1, -1)
|
|
|
|
# Concatenate along the channel dimension.
|
|
return torch.cat([latents, inpainting_mask, original_image_latents], dim=1)
|
|
|
|
def latents_from_embeddings(
|
|
self,
|
|
latents: torch.Tensor,
|
|
scheduler_step_kwargs: dict[str, Any],
|
|
conditioning_data: TextConditioningData,
|
|
noise: Optional[torch.Tensor],
|
|
seed: int,
|
|
timesteps: torch.Tensor,
|
|
init_timestep: torch.Tensor,
|
|
callback: Callable[[PipelineIntermediateState], None],
|
|
control_data: list[ControlNetData] | None = None,
|
|
ip_adapter_data: Optional[list[IPAdapterData]] = None,
|
|
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
|
|
mask: Optional[torch.Tensor] = None,
|
|
masked_latents: Optional[torch.Tensor] = None,
|
|
is_gradient_mask: bool = False,
|
|
) -> torch.Tensor:
|
|
# TODO(ryand): Figure out why this condition is necessary, and document it. My guess is that it's to handle
|
|
# cases where densoisings_start and denoising_end are set such that there are no timesteps.
|
|
if init_timestep.shape[0] == 0 or timesteps.shape[0] == 0:
|
|
return latents
|
|
|
|
orig_latents = latents.clone()
|
|
|
|
batch_size = latents.shape[0]
|
|
batched_init_timestep = init_timestep.expand(batch_size)
|
|
|
|
# noise can be None if the latents have already been noised (e.g. when running the SDXL refiner).
|
|
if noise is not None:
|
|
# TODO(ryand): I'm pretty sure we should be applying init_noise_sigma in cases where we are starting with
|
|
# full noise. Investigate the history of why this got commented out.
|
|
# latents = noise * self.scheduler.init_noise_sigma # it's like in t2l according to diffusers
|
|
latents = self.scheduler.add_noise(latents, noise, batched_init_timestep)
|
|
|
|
self._adjust_memory_efficient_attention(latents)
|
|
|
|
# Handle mask guidance (a.k.a. inpainting).
|
|
mask_guidance: AddsMaskGuidance | None = None
|
|
if mask is not None and not is_inpainting_model(self.unet):
|
|
# We are doing inpainting, since a mask is provided, but we are not using an inpainting model, so we will
|
|
# apply mask guidance to the latents.
|
|
|
|
# 'noise' might be None if the latents have already been noised (e.g. when running the SDXL refiner).
|
|
# We still need noise for inpainting, so we generate it from the seed here.
|
|
if noise is None:
|
|
noise = torch.randn(
|
|
orig_latents.shape,
|
|
dtype=torch.float32,
|
|
device="cpu",
|
|
generator=torch.Generator(device="cpu").manual_seed(seed),
|
|
).to(device=orig_latents.device, dtype=orig_latents.dtype)
|
|
|
|
mask_guidance = AddsMaskGuidance(
|
|
mask=mask,
|
|
mask_latents=orig_latents,
|
|
scheduler=self.scheduler,
|
|
noise=noise,
|
|
is_gradient_mask=is_gradient_mask,
|
|
)
|
|
|
|
use_ip_adapter = ip_adapter_data is not None
|
|
use_regional_prompting = (
|
|
conditioning_data.cond_regions is not None or conditioning_data.uncond_regions is not None
|
|
)
|
|
unet_attention_patcher = None
|
|
attn_ctx = nullcontext()
|
|
|
|
if use_ip_adapter or use_regional_prompting:
|
|
ip_adapters: Optional[List[UNetIPAdapterData]] = (
|
|
[{"ip_adapter": ipa.ip_adapter_model, "target_blocks": ipa.target_blocks} for ipa in ip_adapter_data]
|
|
if use_ip_adapter
|
|
else None
|
|
)
|
|
unet_attention_patcher = UNetAttentionPatcher(ip_adapters)
|
|
attn_ctx = unet_attention_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model)
|
|
|
|
with attn_ctx:
|
|
callback(
|
|
PipelineIntermediateState(
|
|
step=-1,
|
|
order=self.scheduler.order,
|
|
total_steps=len(timesteps),
|
|
timestep=self.scheduler.config.num_train_timesteps,
|
|
latents=latents,
|
|
)
|
|
)
|
|
|
|
for i, t in enumerate(self.progress_bar(timesteps)):
|
|
batched_t = t.expand(batch_size)
|
|
step_output = self.step(
|
|
t=batched_t,
|
|
latents=latents,
|
|
conditioning_data=conditioning_data,
|
|
step_index=i,
|
|
total_step_count=len(timesteps),
|
|
scheduler_step_kwargs=scheduler_step_kwargs,
|
|
mask_guidance=mask_guidance,
|
|
mask=mask,
|
|
masked_latents=masked_latents,
|
|
control_data=control_data,
|
|
ip_adapter_data=ip_adapter_data,
|
|
t2i_adapter_data=t2i_adapter_data,
|
|
)
|
|
latents = step_output.prev_sample
|
|
predicted_original = getattr(step_output, "pred_original_sample", None)
|
|
|
|
callback(
|
|
PipelineIntermediateState(
|
|
step=i,
|
|
order=self.scheduler.order,
|
|
total_steps=len(timesteps),
|
|
timestep=int(t),
|
|
latents=latents,
|
|
predicted_original=predicted_original,
|
|
)
|
|
)
|
|
|
|
# restore unmasked part after the last step is completed
|
|
# in-process masking happens before each step
|
|
if mask is not None:
|
|
if is_gradient_mask:
|
|
latents = torch.where(mask > 0, latents, orig_latents)
|
|
else:
|
|
latents = torch.lerp(
|
|
orig_latents, latents.to(dtype=orig_latents.dtype), mask.to(dtype=orig_latents.dtype)
|
|
)
|
|
|
|
return latents
|
|
|
|
@torch.inference_mode()
|
|
def step(
|
|
self,
|
|
t: torch.Tensor,
|
|
latents: torch.Tensor,
|
|
conditioning_data: TextConditioningData,
|
|
step_index: int,
|
|
total_step_count: int,
|
|
scheduler_step_kwargs: dict[str, Any],
|
|
mask_guidance: AddsMaskGuidance | None,
|
|
mask: torch.Tensor | None,
|
|
masked_latents: torch.Tensor | None,
|
|
control_data: list[ControlNetData] | None = None,
|
|
ip_adapter_data: Optional[list[IPAdapterData]] = None,
|
|
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
|
|
):
|
|
# invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value
|
|
timestep = t[0]
|
|
|
|
# Handle masked image-to-image (a.k.a inpainting).
|
|
if mask_guidance is not None:
|
|
# NOTE: This is intentionally done *before* self.scheduler.scale_model_input(...).
|
|
latents = mask_guidance(latents, timestep)
|
|
|
|
# TODO: should this scaling happen here or inside self._unet_forward?
|
|
# i.e. before or after passing it to InvokeAIDiffuserComponent
|
|
latent_model_input = self.scheduler.scale_model_input(latents, timestep)
|
|
|
|
# Handle ControlNet(s)
|
|
down_block_additional_residuals = None
|
|
mid_block_additional_residual = None
|
|
if control_data is not None:
|
|
down_block_additional_residuals, mid_block_additional_residual = self.invokeai_diffuser.do_controlnet_step(
|
|
control_data=control_data,
|
|
sample=latent_model_input,
|
|
timestep=timestep,
|
|
step_index=step_index,
|
|
total_step_count=total_step_count,
|
|
conditioning_data=conditioning_data,
|
|
)
|
|
|
|
# Handle T2I-Adapter(s)
|
|
down_intrablock_additional_residuals = None
|
|
if t2i_adapter_data is not None:
|
|
accum_adapter_state = None
|
|
for single_t2i_adapter_data in t2i_adapter_data:
|
|
# Determine the T2I-Adapter weights for the current denoising step.
|
|
first_t2i_adapter_step = math.floor(single_t2i_adapter_data.begin_step_percent * total_step_count)
|
|
last_t2i_adapter_step = math.ceil(single_t2i_adapter_data.end_step_percent * total_step_count)
|
|
t2i_adapter_weight = (
|
|
single_t2i_adapter_data.weight[step_index]
|
|
if isinstance(single_t2i_adapter_data.weight, list)
|
|
else single_t2i_adapter_data.weight
|
|
)
|
|
if step_index < first_t2i_adapter_step or step_index > last_t2i_adapter_step:
|
|
# If the current step is outside of the T2I-Adapter's begin/end step range, then set its weight to 0
|
|
# so it has no effect.
|
|
t2i_adapter_weight = 0.0
|
|
|
|
# Apply the t2i_adapter_weight, and accumulate.
|
|
if accum_adapter_state is None:
|
|
# Handle the first T2I-Adapter.
|
|
accum_adapter_state = [val * t2i_adapter_weight for val in single_t2i_adapter_data.adapter_state]
|
|
else:
|
|
# Add to the previous adapter states.
|
|
for idx, value in enumerate(single_t2i_adapter_data.adapter_state):
|
|
accum_adapter_state[idx] += value * t2i_adapter_weight
|
|
|
|
down_intrablock_additional_residuals = accum_adapter_state
|
|
|
|
# Handle inpainting models.
|
|
if is_inpainting_model(self.unet):
|
|
# NOTE: These calls to add_inpainting_channels_to_latents(...) are intentionally done *after*
|
|
# self.scheduler.scale_model_input(...) so that the scaling is not applied to the mask or reference image
|
|
# latents.
|
|
if mask is not None:
|
|
if masked_latents is None:
|
|
raise ValueError("Source image required for inpaint mask when inpaint model used!")
|
|
latent_model_input = self.add_inpainting_channels_to_latents(
|
|
latents=latent_model_input, masked_ref_image_latents=masked_latents, inpainting_mask=mask
|
|
)
|
|
else:
|
|
# We are using an inpainting model, but no mask was provided, so we are not really "inpainting".
|
|
# We generate a global mask and empty original image so that we can still generate in this
|
|
# configuration.
|
|
# TODO(ryand): Should we just raise an exception here instead? I can't think of a use case for wanting
|
|
# to do this.
|
|
# TODO(ryand): If we decide that there is a good reason to keep this, then we should generate the 'fake'
|
|
# mask and original image once rather than on every denoising step.
|
|
latent_model_input = self.add_inpainting_channels_to_latents(
|
|
latents=latent_model_input,
|
|
masked_ref_image_latents=torch.zeros_like(latent_model_input[:1]),
|
|
inpainting_mask=torch.ones_like(latent_model_input[:1, :1]),
|
|
)
|
|
|
|
uc_noise_pred, c_noise_pred = self.invokeai_diffuser.do_unet_step(
|
|
sample=latent_model_input,
|
|
timestep=t, # TODO: debug how handled batched and non batched timesteps
|
|
step_index=step_index,
|
|
total_step_count=total_step_count,
|
|
conditioning_data=conditioning_data,
|
|
ip_adapter_data=ip_adapter_data,
|
|
down_block_additional_residuals=down_block_additional_residuals, # for ControlNet
|
|
mid_block_additional_residual=mid_block_additional_residual, # for ControlNet
|
|
down_intrablock_additional_residuals=down_intrablock_additional_residuals, # for T2I-Adapter
|
|
)
|
|
|
|
guidance_scale = conditioning_data.guidance_scale
|
|
if isinstance(guidance_scale, list):
|
|
guidance_scale = guidance_scale[step_index]
|
|
|
|
noise_pred = self.invokeai_diffuser._combine(uc_noise_pred, c_noise_pred, guidance_scale)
|
|
guidance_rescale_multiplier = conditioning_data.guidance_rescale_multiplier
|
|
if guidance_rescale_multiplier > 0:
|
|
noise_pred = self._rescale_cfg(
|
|
noise_pred,
|
|
c_noise_pred,
|
|
guidance_rescale_multiplier,
|
|
)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
step_output = self.scheduler.step(noise_pred, timestep, latents, **scheduler_step_kwargs)
|
|
|
|
# TODO: discuss injection point options. For now this is a patch to get progress images working with inpainting
|
|
# again.
|
|
if mask_guidance is not None:
|
|
# Apply the mask to any "denoised" or "pred_original_sample" fields.
|
|
if hasattr(step_output, "denoised"):
|
|
step_output.pred_original_sample = mask_guidance(step_output.denoised, self.scheduler.timesteps[-1])
|
|
elif hasattr(step_output, "pred_original_sample"):
|
|
step_output.pred_original_sample = mask_guidance(
|
|
step_output.pred_original_sample, self.scheduler.timesteps[-1]
|
|
)
|
|
else:
|
|
step_output.pred_original_sample = mask_guidance(latents, self.scheduler.timesteps[-1])
|
|
|
|
return step_output
|
|
|
|
@staticmethod
|
|
def _rescale_cfg(total_noise_pred, pos_noise_pred, multiplier=0.7):
|
|
"""Implementation of Algorithm 2 from https://arxiv.org/pdf/2305.08891.pdf."""
|
|
ro_pos = torch.std(pos_noise_pred, dim=(1, 2, 3), keepdim=True)
|
|
ro_cfg = torch.std(total_noise_pred, dim=(1, 2, 3), keepdim=True)
|
|
|
|
x_rescaled = total_noise_pred * (ro_pos / ro_cfg)
|
|
x_final = multiplier * x_rescaled + (1.0 - multiplier) * total_noise_pred
|
|
return x_final
|
|
|
|
def _unet_forward(
|
|
self,
|
|
latents,
|
|
t,
|
|
text_embeddings,
|
|
cross_attention_kwargs: Optional[dict[str, Any]] = None,
|
|
**kwargs,
|
|
):
|
|
"""predict the noise residual"""
|
|
# First three args should be positional, not keywords, so torch hooks can see them.
|
|
return self.unet(
|
|
latents,
|
|
t,
|
|
text_embeddings,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
**kwargs,
|
|
).sample
|