mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
653 lines
28 KiB
Python
653 lines
28 KiB
Python
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
|
|
|
|
import random
|
|
import einops
|
|
from pydantic import BaseModel, Field, validator
|
|
import torch
|
|
from typing import Literal, Optional, Union, List
|
|
|
|
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
|
|
|
|
from invokeai.app.invocations.util.choose_model import choose_model
|
|
from invokeai.app.models.image import ImageCategory
|
|
from invokeai.app.util.misc import SEED_MAX, get_random_seed
|
|
|
|
from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
|
from .controlnet_image_processors import ControlField
|
|
|
|
from ...backend.model_management.model_manager import ModelManager
|
|
from ...backend.util.devices import choose_torch_device, torch_dtype
|
|
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
|
|
from ...backend.image_util.seamless import configure_model_padding
|
|
from ...backend.prompting.conditioning import get_uc_and_c_and_ec
|
|
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline, image_resized_to_grid_as_tensor
|
|
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
|
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
|
|
import numpy as np
|
|
from ..services.image_file_storage import ImageType
|
|
from .baseinvocation import BaseInvocation, InvocationContext
|
|
from .image import ImageField, ImageOutput
|
|
from .compel import ConditioningField
|
|
from ...backend.stable_diffusion import PipelineIntermediateState
|
|
from diffusers.schedulers import SchedulerMixin as Scheduler
|
|
import diffusers
|
|
from diffusers import DiffusionPipeline, ControlNetModel
|
|
|
|
|
|
class LatentsField(BaseModel):
|
|
"""A latents field used for passing latents between invocations"""
|
|
|
|
latents_name: Optional[str] = Field(default=None, description="The name of the latents")
|
|
|
|
class Config:
|
|
schema_extra = {"required": ["latents_name"]}
|
|
|
|
class LatentsOutput(BaseInvocationOutput):
|
|
"""Base class for invocations that output latents"""
|
|
#fmt: off
|
|
type: Literal["latents_output"] = "latents_output"
|
|
|
|
# Inputs
|
|
latents: LatentsField = Field(default=None, description="The output latents")
|
|
width: int = Field(description="The width of the latents in pixels")
|
|
height: int = Field(description="The height of the latents in pixels")
|
|
#fmt: on
|
|
|
|
|
|
def build_latents_output(latents_name: str, latents: torch.Tensor):
|
|
return LatentsOutput(
|
|
latents=LatentsField(latents_name=latents_name),
|
|
width=latents.size()[3] * 8,
|
|
height=latents.size()[2] * 8,
|
|
)
|
|
|
|
class NoiseOutput(BaseInvocationOutput):
|
|
"""Invocation noise output"""
|
|
#fmt: off
|
|
type: Literal["noise_output"] = "noise_output"
|
|
|
|
# Inputs
|
|
noise: LatentsField = Field(default=None, description="The output noise")
|
|
width: int = Field(description="The width of the noise in pixels")
|
|
height: int = Field(description="The height of the noise in pixels")
|
|
#fmt: on
|
|
|
|
def build_noise_output(latents_name: str, latents: torch.Tensor):
|
|
return NoiseOutput(
|
|
noise=LatentsField(latents_name=latents_name),
|
|
width=latents.size()[3] * 8,
|
|
height=latents.size()[2] * 8,
|
|
)
|
|
|
|
|
|
SAMPLER_NAME_VALUES = Literal[
|
|
tuple(list(SCHEDULER_MAP.keys()))
|
|
]
|
|
|
|
|
|
def get_scheduler(scheduler_name:str, model: StableDiffusionGeneratorPipeline)->Scheduler:
|
|
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP['ddim'])
|
|
|
|
scheduler_config = model.scheduler.config
|
|
if "_backup" in scheduler_config:
|
|
scheduler_config = scheduler_config["_backup"]
|
|
scheduler_config = {**scheduler_config, **scheduler_extra_config, "_backup": scheduler_config}
|
|
scheduler = scheduler_class.from_config(scheduler_config)
|
|
|
|
# hack copied over from generate.py
|
|
if not hasattr(scheduler, 'uses_inpainting_model'):
|
|
scheduler.uses_inpainting_model = lambda: False
|
|
return scheduler
|
|
|
|
|
|
def get_noise(width:int, height:int, device:torch.device, seed:int = 0, latent_channels:int=4, use_mps_noise:bool=False, downsampling_factor:int = 8):
|
|
# limit noise to only the diffusion image channels, not the mask channels
|
|
input_channels = min(latent_channels, 4)
|
|
use_device = "cpu" if (use_mps_noise or device.type == "mps") else device
|
|
generator = torch.Generator(device=use_device).manual_seed(seed)
|
|
x = torch.randn(
|
|
[
|
|
1,
|
|
input_channels,
|
|
height // downsampling_factor,
|
|
width // downsampling_factor,
|
|
],
|
|
dtype=torch_dtype(device),
|
|
device=use_device,
|
|
generator=generator,
|
|
).to(device)
|
|
# if self.perlin > 0.0:
|
|
# perlin_noise = self.get_perlin_noise(
|
|
# width // self.downsampling_factor, height // self.downsampling_factor
|
|
# )
|
|
# x = (1 - self.perlin) * x + self.perlin * perlin_noise
|
|
return x
|
|
|
|
|
|
class NoiseInvocation(BaseInvocation):
|
|
"""Generates latent noise."""
|
|
|
|
type: Literal["noise"] = "noise"
|
|
|
|
# Inputs
|
|
seed: int = Field(ge=0, le=SEED_MAX, description="The seed to use", default_factory=get_random_seed)
|
|
width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting noise", )
|
|
height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting noise", )
|
|
|
|
|
|
# Schema customisation
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"tags": ["latents", "noise"],
|
|
},
|
|
}
|
|
|
|
@validator("seed", pre=True)
|
|
def modulo_seed(cls, v):
|
|
"""Returns the seed modulo SEED_MAX to ensure it is within the valid range."""
|
|
return v % SEED_MAX
|
|
|
|
def invoke(self, context: InvocationContext) -> NoiseOutput:
|
|
device = torch.device(choose_torch_device())
|
|
noise = get_noise(self.width, self.height, device, self.seed)
|
|
|
|
name = f'{context.graph_execution_state_id}__{self.id}'
|
|
context.services.latents.save(name, noise)
|
|
return build_noise_output(latents_name=name, latents=noise)
|
|
|
|
|
|
# Text to image
|
|
class TextToLatentsInvocation(BaseInvocation):
|
|
"""Generates latents from conditionings."""
|
|
|
|
type: Literal["t2l"] = "t2l"
|
|
|
|
# Inputs
|
|
# fmt: off
|
|
positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation")
|
|
negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation")
|
|
noise: Optional[LatentsField] = Field(description="The noise to use")
|
|
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
|
|
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
|
|
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
|
|
model: str = Field(default="", description="The model to use (currently ignored)")
|
|
# seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
|
|
# seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
|
|
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
|
|
control: list[ControlField] = Field(default=None, description="The controlnet(s) to use")
|
|
# control: Union[list[ControlField] | None] = Field(default=None, description="The controlnet(s) to use")
|
|
# control: ControlField = Field(default=None, description="The controlnet(s) to use")
|
|
# control: Union[ControlField | list[ControlField] | None] = Field(default=None, description="The controlnet(s) to use")
|
|
# control: Any = Field(default=None, description="The controlnet(s) to use")
|
|
# control: Optional[ControlField] = Field(default=None, description="The control to use")
|
|
# control: List[ControlField] = Field(description="The controlnet(s) to use")
|
|
# control: Optional[list[ControlField]] = Field(default=None, description="The controlnet(s) to use")
|
|
# control: Optional[list[ControlField]] = Field(description="The controlnet(s) to use")
|
|
# fmt: on
|
|
|
|
# Schema customisation
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"tags": ["latents", "image"],
|
|
"type_hints": {
|
|
"model": "model"
|
|
}
|
|
},
|
|
}
|
|
|
|
# TODO: pass this an emitter method or something? or a session for dispatching?
|
|
def dispatch_progress(
|
|
self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState
|
|
) -> None:
|
|
stable_diffusion_step_callback(
|
|
context=context,
|
|
intermediate_state=intermediate_state,
|
|
node=self.dict(),
|
|
source_node_id=source_node_id,
|
|
)
|
|
|
|
def get_model(self, model_manager: ModelManager) -> StableDiffusionGeneratorPipeline:
|
|
model_info = choose_model(model_manager, self.model)
|
|
model_name = model_info['model_name']
|
|
model_hash = model_info['hash']
|
|
model: StableDiffusionGeneratorPipeline = model_info['model']
|
|
model.scheduler = get_scheduler(
|
|
model=model,
|
|
scheduler_name=self.scheduler
|
|
)
|
|
|
|
# if isinstance(model, DiffusionPipeline):
|
|
# for component in [model.unet, model.vae]:
|
|
# configure_model_padding(component,
|
|
# self.seamless,
|
|
# self.seamless_axes
|
|
# )
|
|
# else:
|
|
# configure_model_padding(model,
|
|
# self.seamless,
|
|
# self.seamless_axes
|
|
# )
|
|
|
|
return model
|
|
|
|
|
|
def get_conditioning_data(self, context: InvocationContext, model: StableDiffusionGeneratorPipeline) -> ConditioningData:
|
|
c, extra_conditioning_info = context.services.latents.get(self.positive_conditioning.conditioning_name)
|
|
uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name)
|
|
|
|
conditioning_data = ConditioningData(
|
|
uc,
|
|
c,
|
|
self.cfg_scale,
|
|
extra_conditioning_info,
|
|
postprocessing_settings=PostprocessingSettings(
|
|
threshold=0.0,#threshold,
|
|
warmup=0.2,#warmup,
|
|
h_symmetry_time_pct=None,#h_symmetry_time_pct,
|
|
v_symmetry_time_pct=None#v_symmetry_time_pct,
|
|
),
|
|
).add_scheduler_args_if_applicable(model.scheduler, eta=0.0)#ddim_eta)
|
|
return conditioning_data
|
|
|
|
|
|
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
|
noise = context.services.latents.get(self.noise.latents_name)
|
|
latents_shape = noise.shape
|
|
# assuming fixed dimensional scaling of 8:1 for image:latents
|
|
control_height_resize = latents_shape[2] * 8
|
|
control_width_resize = latents_shape[3] * 8
|
|
|
|
# Get the source node id (we are invoking the prepared node)
|
|
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
|
|
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
|
|
|
|
def step_callback(state: PipelineIntermediateState):
|
|
self.dispatch_progress(context, source_node_id, state)
|
|
|
|
model = self.get_model(context.services.model_manager)
|
|
conditioning_data = self.get_conditioning_data(context, model)
|
|
|
|
print("type of control input: ", type(self.control))
|
|
|
|
if self.control is None:
|
|
print("control input is None")
|
|
control_list = None
|
|
elif isinstance(self.control, list) and len(self.control) == 0:
|
|
print("control input is empty list")
|
|
control_list = None
|
|
elif isinstance(self.control, ControlField):
|
|
print("control input is ControlField")
|
|
# control = [self.control]
|
|
control_list = [self.control]
|
|
# elif isinstance(self.control, list) and len(self.control)>0 and isinstance(self.control[0], ControlField):
|
|
elif isinstance(self.control, list) and len(self.control) > 0 and isinstance(self.control[0], ControlField):
|
|
print("control input is list[ControlField]")
|
|
# print("using first controlnet in list")
|
|
control_list = self.control
|
|
# control = self.control
|
|
else:
|
|
print("input control is unrecognized:", type(self.control))
|
|
control_list = None
|
|
|
|
#if (self.control is None or (isinstance(self.control, list) and len(self.control)==0)):
|
|
if (control_list is None):
|
|
control_models = None
|
|
control_weights = None
|
|
control_images = None
|
|
# from above handling, any control that is not None should now be of type list[ControlField]
|
|
else:
|
|
# FIXME: add checks to skip entry if model or image is None
|
|
# and if weight is None, populate with default 1.0?
|
|
control_models = []
|
|
control_images = []
|
|
control_weights = []
|
|
for control_info in control_list:
|
|
# handle control weights
|
|
control_weights.append(control_info.control_weight)
|
|
|
|
# handle control models
|
|
# FIXME: change this to dropdown menu?
|
|
# FIXME: generalize so don't have to hardcode torch_dtype and device
|
|
control_model = ControlNetModel.from_pretrained(control_info.control_model,
|
|
#torch_dtype=model.unet.dtype).to(model.device)
|
|
#torch.dtype=model.unet.dtype).to("cuda")
|
|
# torch.dtype = model.unet.dtype).to("cuda")
|
|
torch_dtype=torch.float16).to("cuda")
|
|
# torch_dtype = torch.float16).to(model.device)
|
|
# model.dtype).to(model.device)
|
|
control_models.append(control_model)
|
|
|
|
# handle control images
|
|
# loading controlnet image (currently requires pre-processed image)
|
|
# control_image = prep_control_image(control_info.image)
|
|
control_image_field = control_info.image
|
|
input_image = context.services.images.get(control_image_field.image_type, control_image_field.image_name)
|
|
# FIXME: still need to test with different widths, heights, devices, dtypes
|
|
# and add in batch_size, num_images_per_prompt?
|
|
# and do real check for classifier_free_guidance?
|
|
control_image = model.prepare_control_image(
|
|
image=input_image,
|
|
# do_classifier_free_guidance=do_classifier_free_guidance,
|
|
do_classifier_free_guidance=True,
|
|
width=control_width_resize,
|
|
height=control_height_resize,
|
|
# batch_size=batch_size * num_images_per_prompt,
|
|
# num_images_per_prompt=num_images_per_prompt,
|
|
device=control_model.device,
|
|
dtype=control_model.dtype,
|
|
)
|
|
control_images.append(control_image)
|
|
multi_control = MultiControlNetModel(control_models)
|
|
model.control_model = multi_control
|
|
|
|
print("type of control input: ", type(self.control))
|
|
|
|
if (self.control is None):
|
|
control_model_name = None
|
|
control_image_field = None
|
|
control_weight = None
|
|
else:
|
|
control_model_name = self.control.control_model
|
|
control_image_field = self.control.image
|
|
control_weight = self.control.control_weight
|
|
|
|
# # loading controlnet model
|
|
# if (self.control_model is None or self.control_model==''):
|
|
# control_model = None
|
|
# else:
|
|
# FIXME: change this to dropdown menu?
|
|
# FIXME: generalize so don't have to hardcode torch_dtype and device
|
|
control_model = ControlNetModel.from_pretrained(control_model_name,
|
|
torch_dtype=torch.float16).to("cuda")
|
|
model.control_model = control_model
|
|
|
|
# loading controlnet image (currently requires pre-processed image)
|
|
control_image = (
|
|
None if control_image_field is None
|
|
else context.services.images.get(
|
|
control_image_field.image_type, control_image_field.image_name
|
|
)
|
|
)
|
|
|
|
# copied from old backend/txt2img.py
|
|
# FIXME: still need to test with different widths, heights, devices, dtypes
|
|
# and add in batch_size, num_images_per_prompt?
|
|
if control_image is not None:
|
|
if isinstance(control_model, ControlNetModel):
|
|
control_image = model.prepare_control_image(
|
|
image=control_image,
|
|
# do_classifier_free_guidance=do_classifier_free_guidance,
|
|
do_classifier_free_guidance=True,
|
|
# width=width,
|
|
# height=height,
|
|
width=512,
|
|
height=512,
|
|
# batch_size=batch_size * num_images_per_prompt,
|
|
# num_images_per_prompt=num_images_per_prompt,
|
|
device=control_model.device,
|
|
dtype=control_model.dtype,
|
|
)
|
|
elif isinstance(control_model, MultiControlNetModel):
|
|
images = []
|
|
for image_ in control_image:
|
|
image_ = model.prepare_control_image(
|
|
image=image_,
|
|
# do_classifier_free_guidance=do_classifier_free_guidance,
|
|
do_classifier_free_guidance=True,
|
|
# width=width,
|
|
# height=height,
|
|
width=512,
|
|
height=512,
|
|
# batch_size=batch_size * num_images_per_prompt,
|
|
# num_images_per_prompt=num_images_per_prompt,
|
|
device=control_model.device,
|
|
dtype=control_model.dtype,
|
|
)
|
|
images.append(image_)
|
|
control_image = images
|
|
|
|
|
|
|
|
# TODO: Verify the noise is the right size
|
|
result_latents, result_attention_map_saver = model.latents_from_embeddings(
|
|
latents=torch.zeros_like(noise, dtype=torch_dtype(model.device)),
|
|
noise=noise,
|
|
num_inference_steps=self.steps,
|
|
conditioning_data=conditioning_data,
|
|
callback=step_callback,
|
|
control_image=control_images,
|
|
control_weight=control_weights,
|
|
)
|
|
|
|
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
|
torch.cuda.empty_cache()
|
|
|
|
name = f'{context.graph_execution_state_id}__{self.id}'
|
|
context.services.latents.save(name, result_latents)
|
|
return build_latents_output(latents_name=name, latents=result_latents)
|
|
|
|
|
|
class LatentsToLatentsInvocation(TextToLatentsInvocation):
|
|
"""Generates latents using latents as base image."""
|
|
|
|
type: Literal["l2l"] = "l2l"
|
|
|
|
# Inputs
|
|
latents: Optional[LatentsField] = Field(description="The latents to use as a base image")
|
|
strength: float = Field(default=0.5, description="The strength of the latents to use")
|
|
|
|
# Schema customisation
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"tags": ["latents"],
|
|
"type_hints": {
|
|
"model": "model"
|
|
}
|
|
},
|
|
}
|
|
|
|
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
|
noise = context.services.latents.get(self.noise.latents_name)
|
|
latent = context.services.latents.get(self.latents.latents_name)
|
|
|
|
# Get the source node id (we are invoking the prepared node)
|
|
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
|
|
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
|
|
|
|
def step_callback(state: PipelineIntermediateState):
|
|
self.dispatch_progress(context, source_node_id, state)
|
|
|
|
model = self.get_model(context.services.model_manager)
|
|
conditioning_data = self.get_conditioning_data(context, model)
|
|
|
|
# TODO: Verify the noise is the right size
|
|
|
|
initial_latents = latent if self.strength < 1.0 else torch.zeros_like(
|
|
latent, device=model.device, dtype=latent.dtype
|
|
)
|
|
|
|
timesteps, _ = model.get_img2img_timesteps(self.steps, self.strength)
|
|
|
|
result_latents, result_attention_map_saver = model.latents_from_embeddings(
|
|
latents=initial_latents,
|
|
timesteps=timesteps,
|
|
noise=noise,
|
|
num_inference_steps=self.steps,
|
|
conditioning_data=conditioning_data,
|
|
callback=step_callback
|
|
)
|
|
|
|
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
|
torch.cuda.empty_cache()
|
|
|
|
name = f'{context.graph_execution_state_id}__{self.id}'
|
|
context.services.latents.save(name, result_latents)
|
|
return build_latents_output(latents_name=name, latents=result_latents)
|
|
|
|
|
|
# Latent to image
|
|
class LatentsToImageInvocation(BaseInvocation):
|
|
"""Generates an image from latents."""
|
|
|
|
type: Literal["l2i"] = "l2i"
|
|
|
|
# Inputs
|
|
latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
|
|
model: str = Field(default="", description="The model to use")
|
|
|
|
# Schema customisation
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"tags": ["latents", "image"],
|
|
"type_hints": {
|
|
"model": "model"
|
|
}
|
|
},
|
|
}
|
|
|
|
@torch.no_grad()
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
latents = context.services.latents.get(self.latents.latents_name)
|
|
|
|
# TODO: this only really needs the vae
|
|
model_info = choose_model(context.services.model_manager, self.model)
|
|
model: StableDiffusionGeneratorPipeline = model_info['model']
|
|
|
|
with torch.inference_mode():
|
|
np_image = model.decode_latents(latents)
|
|
image = model.numpy_to_pil(np_image)[0]
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
image_dto = context.services.images.create(
|
|
image=image,
|
|
image_type=ImageType.RESULT,
|
|
image_category=ImageCategory.GENERAL,
|
|
session_id=context.graph_execution_state_id,
|
|
node_id=self.id,
|
|
is_intermediate=self.is_intermediate
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(
|
|
image_name=image_dto.image_name,
|
|
image_type=image_dto.image_type,
|
|
),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
|
|
LATENTS_INTERPOLATION_MODE = Literal[
|
|
"nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"
|
|
]
|
|
|
|
|
|
class ResizeLatentsInvocation(BaseInvocation):
|
|
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
|
|
|
|
type: Literal["lresize"] = "lresize"
|
|
|
|
# Inputs
|
|
latents: Optional[LatentsField] = Field(description="The latents to resize")
|
|
width: int = Field(ge=64, multiple_of=8, description="The width to resize to (px)")
|
|
height: int = Field(ge=64, multiple_of=8, description="The height to resize to (px)")
|
|
mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
|
|
antialias: bool = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
|
|
|
|
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
|
latents = context.services.latents.get(self.latents.latents_name)
|
|
|
|
resized_latents = torch.nn.functional.interpolate(
|
|
latents,
|
|
size=(self.height // 8, self.width // 8),
|
|
mode=self.mode,
|
|
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
|
|
)
|
|
|
|
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
|
torch.cuda.empty_cache()
|
|
|
|
name = f"{context.graph_execution_state_id}__{self.id}"
|
|
context.services.latents.save(name, resized_latents)
|
|
return build_latents_output(latents_name=name, latents=resized_latents)
|
|
|
|
|
|
class ScaleLatentsInvocation(BaseInvocation):
|
|
"""Scales latents by a given factor."""
|
|
|
|
type: Literal["lscale"] = "lscale"
|
|
|
|
# Inputs
|
|
latents: Optional[LatentsField] = Field(description="The latents to scale")
|
|
scale_factor: float = Field(gt=0, description="The factor by which to scale the latents")
|
|
mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
|
|
antialias: bool = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
|
|
|
|
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
|
latents = context.services.latents.get(self.latents.latents_name)
|
|
|
|
# resizing
|
|
resized_latents = torch.nn.functional.interpolate(
|
|
latents,
|
|
scale_factor=self.scale_factor,
|
|
mode=self.mode,
|
|
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
|
|
)
|
|
|
|
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
|
torch.cuda.empty_cache()
|
|
|
|
name = f"{context.graph_execution_state_id}__{self.id}"
|
|
context.services.latents.save(name, resized_latents)
|
|
return build_latents_output(latents_name=name, latents=resized_latents)
|
|
|
|
|
|
class ImageToLatentsInvocation(BaseInvocation):
|
|
"""Encodes an image into latents."""
|
|
|
|
type: Literal["i2l"] = "i2l"
|
|
|
|
# Inputs
|
|
image: Union[ImageField, None] = Field(description="The image to encode")
|
|
model: str = Field(default="", description="The model to use")
|
|
|
|
# Schema customisation
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"tags": ["latents", "image"],
|
|
"type_hints": {"model": "model"},
|
|
},
|
|
}
|
|
|
|
@torch.no_grad()
|
|
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
|
image = context.services.images.get_pil_image(
|
|
self.image.image_type, self.image.image_name
|
|
)
|
|
|
|
# TODO: this only really needs the vae
|
|
model_info = choose_model(context.services.model_manager, self.model)
|
|
model: StableDiffusionGeneratorPipeline = model_info["model"]
|
|
|
|
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
|
|
|
|
if image_tensor.dim() == 3:
|
|
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
|
|
|
|
latents = model.non_noised_latents_from_image(
|
|
image_tensor,
|
|
device=model._model_group.device_for(model.unet),
|
|
dtype=model.unet.dtype,
|
|
)
|
|
|
|
name = f"{context.graph_execution_state_id}__{self.id}"
|
|
context.services.latents.save(name, latents)
|
|
return build_latents_output(latents_name=name, latents=latents)
|
|
|