mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
983 lines
37 KiB
Python
983 lines
37 KiB
Python
'''
|
|
Manage a cache of Stable Diffusion model files for fast switching.
|
|
They are moved between GPU and CPU as necessary. If CPU memory falls
|
|
below a preset minimum, the least recently used model will be
|
|
cleared and loaded from disk when next needed.
|
|
'''
|
|
from __future__ import annotations
|
|
|
|
import contextlib
|
|
import gc
|
|
import hashlib
|
|
import io
|
|
import os
|
|
import sys
|
|
import textwrap
|
|
import time
|
|
import traceback
|
|
import warnings
|
|
import safetensors.torch
|
|
from pathlib import Path
|
|
from typing import Union, Any
|
|
from ldm.util import download_with_progress_bar
|
|
|
|
import torch
|
|
import safetensors
|
|
import transformers
|
|
from diffusers import AutoencoderKL, logging as dlogging
|
|
from omegaconf import OmegaConf
|
|
from omegaconf.dictconfig import DictConfig
|
|
from picklescan.scanner import scan_file_path
|
|
|
|
from ldm.invoke.generator.diffusers_pipeline import StableDiffusionGeneratorPipeline
|
|
from ldm.invoke.globals import Globals, global_models_dir, global_autoscan_dir, global_cache_dir
|
|
from ldm.util import instantiate_from_config, ask_user
|
|
|
|
DEFAULT_MAX_MODELS=2
|
|
|
|
class ModelManager(object):
|
|
def __init__(self, config:OmegaConf, device_type:str, precision:str, max_loaded_models=DEFAULT_MAX_MODELS):
|
|
'''
|
|
Initialize with the path to the models.yaml config file,
|
|
the torch device type, and precision. The optional
|
|
min_avail_mem argument specifies how much unused system
|
|
(CPU) memory to preserve. The cache of models in RAM will
|
|
grow until this value is approached. Default is 2G.
|
|
'''
|
|
# prevent nasty-looking CLIP log message
|
|
transformers.logging.set_verbosity_error()
|
|
self.config = config
|
|
self.precision = precision
|
|
self.device = torch.device(device_type)
|
|
self.max_loaded_models = max_loaded_models
|
|
self.models = {}
|
|
self.stack = [] # this is an LRU FIFO
|
|
self.current_model = None
|
|
|
|
def valid_model(self, model_name:str)->bool:
|
|
'''
|
|
Given a model name, returns True if it is a valid
|
|
identifier.
|
|
'''
|
|
return model_name in self.config
|
|
|
|
def get_model(self, model_name:str):
|
|
'''
|
|
Given a model named identified in models.yaml, return
|
|
the model object. If in RAM will load into GPU VRAM.
|
|
If on disk, will load from there.
|
|
'''
|
|
if not self.valid_model(model_name):
|
|
print(f'** "{model_name}" is not a known model name. Please check your models.yaml file')
|
|
return self.current_model
|
|
|
|
if self.current_model != model_name:
|
|
if model_name not in self.models: # make room for a new one
|
|
self._make_cache_room()
|
|
self.offload_model(self.current_model)
|
|
|
|
if model_name in self.models:
|
|
requested_model = self.models[model_name]['model']
|
|
print(f'>> Retrieving model {model_name} from system RAM cache')
|
|
self.models[model_name]['model'] = self._model_from_cpu(requested_model)
|
|
width = self.models[model_name]['width']
|
|
height = self.models[model_name]['height']
|
|
hash = self.models[model_name]['hash']
|
|
|
|
else: # we're about to load a new model, so potentially offload the least recently used one
|
|
requested_model, width, height, hash = self._load_model(model_name)
|
|
self.models[model_name] = {
|
|
'model': requested_model,
|
|
'width': width,
|
|
'height': height,
|
|
'hash': hash,
|
|
}
|
|
|
|
self.current_model = model_name
|
|
self._push_newest_model(model_name)
|
|
return {
|
|
'model':requested_model,
|
|
'width':width,
|
|
'height':height,
|
|
'hash': hash
|
|
}
|
|
|
|
def default_model(self) -> str | None:
|
|
'''
|
|
Returns the name of the default model, or None
|
|
if none is defined.
|
|
'''
|
|
for model_name in self.config:
|
|
if self.config[model_name].get('default'):
|
|
return model_name
|
|
|
|
def set_default_model(self,model_name:str) -> None:
|
|
'''
|
|
Set the default model. The change will not take
|
|
effect until you call model_manager.commit()
|
|
'''
|
|
assert model_name in self.models,f"unknown model '{model_name}'"
|
|
|
|
config = self.config
|
|
for model in config:
|
|
config[model].pop('default',None)
|
|
config[model_name]['default'] = True
|
|
|
|
def model_info(self, model_name:str)->dict:
|
|
'''
|
|
Given a model name returns the OmegaConf (dict-like) object describing it.
|
|
'''
|
|
if model_name not in self.config:
|
|
return None
|
|
return self.config[model_name]
|
|
|
|
def model_names(self)->list[str]:
|
|
'''
|
|
Return a list consisting of all the names of models defined in models.yaml
|
|
'''
|
|
return list(self.config.keys())
|
|
|
|
def is_legacy(self,model_name:str)->bool:
|
|
'''
|
|
Return true if this is a legacy (.ckpt) model
|
|
'''
|
|
info = self.model_info(model_name)
|
|
if 'weights' in info and info['weights'].endswith(('.ckpt','.safetensors')):
|
|
return True
|
|
return False
|
|
|
|
def list_models(self) -> dict:
|
|
'''
|
|
Return a dict of models in the format:
|
|
{ model_name1: {'status': ('active'|'cached'|'not loaded'),
|
|
'description': description,
|
|
'format': ('ckpt'|'diffusers'|'vae'),
|
|
},
|
|
model_name2: { etc }
|
|
Please use model_manager.models() to get all the model names,
|
|
model_manager.model_info('model-name') to get the stanza for the model
|
|
named 'model-name', and model_manager.config to get the full OmegaConf
|
|
object derived from models.yaml
|
|
'''
|
|
models = {}
|
|
for name in sorted(self.config):
|
|
stanza = self.config[name]
|
|
|
|
# don't include VAEs in listing (legacy style)
|
|
if 'config' in stanza and '/VAE/' in stanza['config']:
|
|
continue
|
|
|
|
models[name] = dict()
|
|
format = stanza.get('format','ckpt') # Determine Format
|
|
|
|
# Common Attribs
|
|
description = stanza.get('description', None)
|
|
if self.current_model == name:
|
|
status = 'active'
|
|
elif name in self.models:
|
|
status = 'cached'
|
|
else:
|
|
status = 'not loaded'
|
|
models[name].update(
|
|
description = description,
|
|
format = format,
|
|
status = status,
|
|
)
|
|
|
|
# Checkpoint Config Parse
|
|
if format == 'ckpt':
|
|
models[name].update(
|
|
config = str(stanza.get('config', None)),
|
|
weights = str(stanza.get('weights', None)),
|
|
vae = str(stanza.get('vae', None)),
|
|
width = str(stanza.get('width', 512)),
|
|
height = str(stanza.get('height', 512)),
|
|
)
|
|
|
|
# Diffusers Config Parse
|
|
if (vae := stanza.get('vae',None)):
|
|
if isinstance(vae,DictConfig):
|
|
vae = dict(
|
|
repo_id = str(vae.get('repo_id',None)),
|
|
path = str(vae.get('path',None)),
|
|
subfolder = str(vae.get('subfolder',None))
|
|
)
|
|
|
|
if format == 'diffusers':
|
|
models[name].update(
|
|
vae = vae,
|
|
repo_id = str(stanza.get('repo_id', None)),
|
|
path = str(stanza.get('path',None)),
|
|
)
|
|
|
|
return models
|
|
|
|
def print_models(self) -> None:
|
|
'''
|
|
Print a table of models, their descriptions, and load status
|
|
'''
|
|
models = self.list_models()
|
|
for name in models:
|
|
if models[name]['format'] == 'vae':
|
|
continue
|
|
line = f'{name:25s} {models[name]["status"]:>10s} {models[name]["format"]:10s} {models[name]["description"]}'
|
|
if models[name]['status'] == 'active':
|
|
line = f'\033[1m{line}\033[0m'
|
|
print(line)
|
|
|
|
def del_model(self, model_name:str) -> None:
|
|
'''
|
|
Delete the named model.
|
|
'''
|
|
omega = self.config
|
|
if model_name not in omega:
|
|
print(f'** Unknown model {model_name}')
|
|
return
|
|
del omega[model_name]
|
|
if model_name in self.stack:
|
|
self.stack.remove(model_name)
|
|
|
|
def add_model(self, model_name:str, model_attributes:dict, clobber:bool=False) -> None:
|
|
'''
|
|
Update the named model with a dictionary of attributes. Will fail with an
|
|
assertion error if the name already exists. Pass clobber=True to overwrite.
|
|
On a successful update, the config will be changed in memory and the
|
|
method will return True. Will fail with an assertion error if provided
|
|
attributes are incorrect or the model name is missing.
|
|
'''
|
|
omega = self.config
|
|
assert 'format' in model_attributes, 'missing required field "format"'
|
|
if model_attributes['format']=='diffusers':
|
|
assert 'description' in model_attributes, 'required field "description" is missing'
|
|
assert 'path' in model_attributes or 'repo_id' in model_attributes,'model must have either the "path" or "repo_id" fields defined'
|
|
else:
|
|
for field in ('description','weights','height','width','config'):
|
|
assert field in model_attributes, f'required field {field} is missing'
|
|
|
|
assert (clobber or model_name not in omega), f'attempt to overwrite existing model definition "{model_name}"'
|
|
|
|
omega[model_name] = model_attributes
|
|
|
|
if 'weights' in omega[model_name]:
|
|
omega[model_name]['weights'].replace('\\','/')
|
|
|
|
if clobber:
|
|
self._invalidate_cached_model(model_name)
|
|
|
|
def _load_model(self, model_name:str):
|
|
"""Load and initialize the model from configuration variables passed at object creation time"""
|
|
if model_name not in self.config:
|
|
print(f'"{model_name}" is not a known model name. Please check your models.yaml file')
|
|
return
|
|
|
|
mconfig = self.config[model_name]
|
|
|
|
# for usage statistics
|
|
if self._has_cuda():
|
|
torch.cuda.reset_peak_memory_stats()
|
|
torch.cuda.empty_cache()
|
|
|
|
tic = time.time()
|
|
|
|
# this does the work
|
|
model_format = mconfig.get('format', 'ckpt')
|
|
if model_format == 'ckpt':
|
|
weights = mconfig.weights
|
|
print(f'>> Loading {model_name} from {weights}')
|
|
model, width, height, model_hash = self._load_ckpt_model(model_name, mconfig)
|
|
elif model_format == 'diffusers':
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter('ignore')
|
|
model, width, height, model_hash = self._load_diffusers_model(mconfig)
|
|
else:
|
|
raise NotImplementedError(f"Unknown model format {model_name}: {model_format}")
|
|
|
|
# usage statistics
|
|
toc = time.time()
|
|
print('>> Model loaded in', '%4.2fs' % (toc - tic))
|
|
if self._has_cuda():
|
|
print(
|
|
'>> Max VRAM used to load the model:',
|
|
'%4.2fG' % (torch.cuda.max_memory_allocated() / 1e9),
|
|
'\n>> Current VRAM usage:'
|
|
'%4.2fG' % (torch.cuda.memory_allocated() / 1e9),
|
|
)
|
|
return model, width, height, model_hash
|
|
|
|
def _load_ckpt_model(self, model_name, mconfig):
|
|
config = mconfig.config
|
|
weights = mconfig.weights
|
|
vae = mconfig.get('vae')
|
|
width = mconfig.width
|
|
height = mconfig.height
|
|
|
|
if not os.path.isabs(config):
|
|
config = os.path.join(Globals.root,config)
|
|
if not os.path.isabs(weights):
|
|
weights = os.path.normpath(os.path.join(Globals.root,weights))
|
|
# scan model
|
|
self.scan_model(model_name, weights)
|
|
|
|
print(f'>> Loading {model_name} from {weights}')
|
|
|
|
# for usage statistics
|
|
if self._has_cuda():
|
|
torch.cuda.reset_peak_memory_stats()
|
|
torch.cuda.empty_cache()
|
|
|
|
tic = time.time()
|
|
|
|
# this does the work
|
|
if not os.path.isabs(config):
|
|
config = os.path.join(Globals.root,config)
|
|
omega_config = OmegaConf.load(config)
|
|
with open(weights,'rb') as f:
|
|
weight_bytes = f.read()
|
|
model_hash = self._cached_sha256(weights, weight_bytes)
|
|
sd = None
|
|
if weights.endswith('.safetensors'):
|
|
sd = safetensors.torch.load(weight_bytes)
|
|
else:
|
|
sd = torch.load(io.BytesIO(weight_bytes), map_location='cpu')
|
|
del weight_bytes
|
|
# merged models from auto11 merge board are flat for some reason
|
|
if 'state_dict' in sd:
|
|
sd = sd['state_dict']
|
|
|
|
print(' | Forcing garbage collection prior to loading new model')
|
|
gc.collect()
|
|
model = instantiate_from_config(omega_config.model)
|
|
model.load_state_dict(sd, strict=False)
|
|
|
|
if self.precision == 'float16':
|
|
print(' | Using faster float16 precision')
|
|
model = model.to(torch.float16)
|
|
else:
|
|
print(' | Using more accurate float32 precision')
|
|
|
|
# look and load a matching vae file. Code borrowed from AUTOMATIC1111 modules/sd_models.py
|
|
if vae:
|
|
if not os.path.isabs(vae):
|
|
vae = os.path.normpath(os.path.join(Globals.root,vae))
|
|
if os.path.exists(vae):
|
|
print(f' | Loading VAE weights from: {vae}')
|
|
vae_ckpt = None
|
|
vae_dict = None
|
|
if vae.endswith('.safetensors'):
|
|
vae_ckpt = safetensors.torch.load_file(vae)
|
|
vae_dict = {k: v for k, v in vae_ckpt.items() if k[0:4] != "loss"}
|
|
else:
|
|
vae_ckpt = torch.load(vae, map_location="cpu")
|
|
vae_dict = {k: v for k, v in vae_ckpt['state_dict'].items() if k[0:4] != "loss"}
|
|
model.first_stage_model.load_state_dict(vae_dict, strict=False)
|
|
else:
|
|
print(f' | VAE file {vae} not found. Skipping.')
|
|
|
|
model.to(self.device)
|
|
# model.to doesn't change the cond_stage_model.device used to move the tokenizer output, so set it here
|
|
model.cond_stage_model.device = self.device
|
|
|
|
model.eval()
|
|
|
|
for module in model.modules():
|
|
if isinstance(module, (torch.nn.Conv2d, torch.nn.ConvTranspose2d)):
|
|
module._orig_padding_mode = module.padding_mode
|
|
|
|
# usage statistics
|
|
toc = time.time()
|
|
print('>> Model loaded in', '%4.2fs' % (toc - tic))
|
|
|
|
if self._has_cuda():
|
|
print(
|
|
'>> Max VRAM used to load the model:',
|
|
'%4.2fG' % (torch.cuda.max_memory_allocated() / 1e9),
|
|
'\n>> Current VRAM usage:'
|
|
'%4.2fG' % (torch.cuda.memory_allocated() / 1e9),
|
|
)
|
|
|
|
return model, width, height, model_hash
|
|
|
|
def _load_diffusers_model(self, mconfig):
|
|
name_or_path = self.model_name_or_path(mconfig)
|
|
using_fp16 = self.precision == 'float16'
|
|
|
|
print(f'>> Loading diffusers model from {name_or_path}')
|
|
if using_fp16:
|
|
print(' | Using faster float16 precision')
|
|
else:
|
|
print(' | Using more accurate float32 precision')
|
|
|
|
# TODO: scan weights maybe?
|
|
pipeline_args: dict[str, Any] = dict(
|
|
safety_checker=None,
|
|
local_files_only=not Globals.internet_available
|
|
)
|
|
if 'vae' in mconfig:
|
|
vae = self._load_vae(mconfig['vae'])
|
|
pipeline_args.update(vae=vae)
|
|
if not isinstance(name_or_path,Path):
|
|
pipeline_args.update(cache_dir=global_cache_dir('diffusers'))
|
|
if using_fp16:
|
|
pipeline_args.update(torch_dtype=torch.float16)
|
|
fp_args_list = [{'revision':'fp16'},{}]
|
|
else:
|
|
fp_args_list = [{}]
|
|
|
|
verbosity = dlogging.get_verbosity()
|
|
dlogging.set_verbosity_error()
|
|
|
|
pipeline = None
|
|
for fp_args in fp_args_list:
|
|
try:
|
|
pipeline = StableDiffusionGeneratorPipeline.from_pretrained(
|
|
name_or_path,
|
|
**pipeline_args,
|
|
**fp_args,
|
|
)
|
|
|
|
except OSError as e:
|
|
if str(e).startswith('fp16 is not a valid'):
|
|
print(f'Could not fetch half-precision version of model {name_or_path}; fetching full-precision instead')
|
|
else:
|
|
print(f'An unexpected error occurred while downloading the model: {e})')
|
|
if pipeline:
|
|
break
|
|
|
|
dlogging.set_verbosity(verbosity)
|
|
assert pipeline is not None, OSError(f'"{name_or_path}" could not be loaded')
|
|
|
|
pipeline.to(self.device)
|
|
|
|
model_hash = self._diffuser_sha256(name_or_path)
|
|
|
|
# square images???
|
|
width = pipeline.unet.config.sample_size * pipeline.vae_scale_factor
|
|
height = width
|
|
|
|
print(f' | Default image dimensions = {width} x {height}')
|
|
|
|
return pipeline, width, height, model_hash
|
|
|
|
def model_name_or_path(self, model_name:Union[str,DictConfig]) -> str | Path:
|
|
if isinstance(model_name,DictConfig):
|
|
mconfig = model_name
|
|
elif model_name in self.config:
|
|
mconfig = self.config[model_name]
|
|
else:
|
|
raise ValueError(f'"{model_name}" is not a known model name. Please check your models.yaml file')
|
|
|
|
if 'path' in mconfig:
|
|
path = Path(mconfig['path'])
|
|
if not path.is_absolute():
|
|
path = Path(Globals.root, path).resolve()
|
|
return path
|
|
elif 'repo_id' in mconfig:
|
|
return mconfig['repo_id']
|
|
else:
|
|
raise ValueError("Model config must specify either repo_id or path.")
|
|
|
|
def offload_model(self, model_name:str) -> None:
|
|
'''
|
|
Offload the indicated model to CPU. Will call
|
|
_make_cache_room() to free space if needed.
|
|
'''
|
|
if model_name not in self.models:
|
|
return
|
|
|
|
print(f'>> Offloading {model_name} to CPU')
|
|
model = self.models[model_name]['model']
|
|
self.models[model_name]['model'] = self._model_to_cpu(model)
|
|
|
|
gc.collect()
|
|
if self._has_cuda():
|
|
torch.cuda.empty_cache()
|
|
|
|
def scan_model(self, model_name, checkpoint):
|
|
'''
|
|
Apply picklescanner to the indicated checkpoint and issue a warning
|
|
and option to exit if an infected file is identified.
|
|
'''
|
|
# scan model
|
|
print(f'>> Scanning Model: {model_name}')
|
|
scan_result = scan_file_path(checkpoint)
|
|
if scan_result.infected_files != 0:
|
|
if scan_result.infected_files == 1:
|
|
print(f'\n### Issues Found In Model: {scan_result.issues_count}')
|
|
print('### WARNING: The model you are trying to load seems to be infected.')
|
|
print('### For your safety, InvokeAI will not load this model.')
|
|
print('### Please use checkpoints from trusted sources.')
|
|
print("### Exiting InvokeAI")
|
|
sys.exit()
|
|
else:
|
|
print('\n### WARNING: InvokeAI was unable to scan the model you are using.')
|
|
model_safe_check_fail = ask_user('Do you want to to continue loading the model?', ['y', 'n'])
|
|
if model_safe_check_fail.lower() != 'y':
|
|
print("### Exiting InvokeAI")
|
|
sys.exit()
|
|
else:
|
|
print('>> Model scanned ok!')
|
|
|
|
def import_diffuser_model(self,
|
|
repo_or_path:Union[str,Path],
|
|
model_name:str=None,
|
|
description:str=None,
|
|
commit_to_conf:Path=None,
|
|
)->bool:
|
|
'''
|
|
Attempts to install the indicated diffuser model and returns True if successful.
|
|
|
|
"repo_or_path" can be either a repo-id or a path-like object corresponding to the
|
|
top of a downloaded diffusers directory.
|
|
|
|
You can optionally provide a model name and/or description. If not provided,
|
|
then these will be derived from the repo name. If you provide a commit_to_conf
|
|
path to the configuration file, then the new entry will be committed to the
|
|
models.yaml file.
|
|
'''
|
|
model_name = model_name or Path(repo_or_path).stem
|
|
description = description or f'imported diffusers model {model_name}'
|
|
new_config = dict(
|
|
description=description,
|
|
format='diffusers',
|
|
)
|
|
if isinstance(repo_or_path,Path) and repo_or_path.exists():
|
|
new_config.update(path=repo_or_path)
|
|
else:
|
|
new_config.update(repo_id=repo_or_path)
|
|
|
|
self.add_model(model_name, new_config, True)
|
|
if commit_to_conf:
|
|
self.commit(commit_to_conf)
|
|
return True
|
|
|
|
def import_ckpt_model(self,
|
|
weights:Union[str,Path],
|
|
config:Union[str,Path]='configs/stable-diffusion/v1-inference.yaml',
|
|
model_name:str=None,
|
|
model_description:str=None,
|
|
commit_to_conf:Path=None,
|
|
)->bool:
|
|
'''
|
|
Attempts to install the indicated ckpt file and returns True if successful.
|
|
|
|
"weights" can be either a path-like object corresponding to a local .ckpt file
|
|
or a http/https URL pointing to a remote model.
|
|
|
|
"config" is the model config file to use with this ckpt file. It defaults to
|
|
v1-inference.yaml. If a URL is provided, the config will be downloaded.
|
|
|
|
You can optionally provide a model name and/or description. If not provided,
|
|
then these will be derived from the weight file name. If you provide a commit_to_conf
|
|
path to the configuration file, then the new entry will be committed to the
|
|
models.yaml file.
|
|
'''
|
|
weights_path = self._resolve_path(weights,'models/ldm/stable-diffusion-v1')
|
|
config_path = self._resolve_path(config,'configs/stable-diffusion')
|
|
|
|
if weights_path is None or not weights_path.exists():
|
|
return False
|
|
if config_path is None or not config_path.exists():
|
|
return False
|
|
|
|
model_name = model_name or Path(weights).stem
|
|
model_description = model_description or f'imported stable diffusion weights file {model_name}'
|
|
new_config = dict(
|
|
weights=str(weights_path),
|
|
config=str(config_path),
|
|
description=model_description,
|
|
format='ckpt',
|
|
width=512,
|
|
height=512
|
|
)
|
|
self.add_model(model_name, new_config, True)
|
|
if commit_to_conf:
|
|
self.commit(commit_to_conf)
|
|
return True
|
|
|
|
def autoconvert_weights(
|
|
self,
|
|
conf_path:Path,
|
|
weights_directory:Path=None,
|
|
dest_directory:Path=None,
|
|
):
|
|
'''
|
|
Scan the indicated directory for .ckpt files, convert into diffuser models,
|
|
and import.
|
|
'''
|
|
weights_directory = weights_directory or global_autoscan_dir()
|
|
dest_directory = dest_directory or Path(global_models_dir(), 'optimized-ckpts')
|
|
|
|
print('>> Checking for unconverted .ckpt files in {weights_directory}')
|
|
ckpt_files = dict()
|
|
for root, dirs, files in os.walk(weights_directory):
|
|
for f in files:
|
|
if not f.endswith('.ckpt'):
|
|
continue
|
|
basename = Path(f).stem
|
|
dest = Path(dest_directory,basename)
|
|
if not dest.exists():
|
|
ckpt_files[Path(root,f)]=dest
|
|
|
|
if len(ckpt_files)==0:
|
|
return
|
|
|
|
print(f'>> New .ckpt file(s) found in {weights_directory}. Optimizing and importing...')
|
|
for ckpt in ckpt_files:
|
|
self.convert_and_import(ckpt, ckpt_files[ckpt])
|
|
self.commit(conf_path)
|
|
|
|
def convert_and_import(self,
|
|
ckpt_path:Path,
|
|
diffuser_path:Path,
|
|
model_name=None,
|
|
model_description=None,
|
|
commit_to_conf:Path=None,
|
|
)->dict:
|
|
'''
|
|
Convert a legacy ckpt weights file to diffuser model and import
|
|
into models.yaml.
|
|
'''
|
|
new_config = None
|
|
from ldm.invoke.ckpt_to_diffuser import convert_ckpt_to_diffuser
|
|
import transformers
|
|
if diffuser_path.exists():
|
|
print(f'ERROR: The path {str(diffuser_path)} already exists. Please move or remove it and try again.')
|
|
return
|
|
|
|
model_name = model_name or diffuser_path.name
|
|
model_description = model_description or 'Optimized version of {model_name}'
|
|
print(f'>> {model_name}: optimizing (30-60s).')
|
|
try:
|
|
verbosity =transformers.logging.get_verbosity()
|
|
transformers.logging.set_verbosity_error()
|
|
convert_ckpt_to_diffuser(ckpt_path, diffuser_path,extract_ema=True)
|
|
transformers.logging.set_verbosity(verbosity)
|
|
print(f'>> Success. Optimized model is now located at {str(diffuser_path)}')
|
|
print(f'>> Writing new config file entry for {model_name}...',end='')
|
|
new_config = dict(
|
|
path=str(diffuser_path),
|
|
description=model_description,
|
|
format='diffusers',
|
|
)
|
|
self.del_model(model_name)
|
|
self.add_model(model_name, new_config, True)
|
|
if commit_to_conf:
|
|
self.commit(commit_to_conf)
|
|
except Exception as e:
|
|
print(f'** Conversion failed: {str(e)}')
|
|
traceback.print_exc()
|
|
|
|
print('done.')
|
|
return new_config
|
|
|
|
def del_config(self, model_name:str, gen, opt, completer):
|
|
current_model = gen.model_name
|
|
if model_name == current_model:
|
|
print("** Can't delete active model. !switch to another model first. **")
|
|
return
|
|
gen.model_manager.del_model(model_name)
|
|
gen.model_manager.commit(opt.conf)
|
|
print(f'** {model_name} deleted')
|
|
completer.del_model(model_name)
|
|
|
|
def search_models(self, search_folder):
|
|
print(f'>> Finding Models In: {search_folder}')
|
|
models_folder_ckpt = Path(search_folder).glob('**/*.ckpt')
|
|
models_folder_safetensors = Path(search_folder).glob('**/*.safetensors')
|
|
|
|
ckpt_files = [x for x in models_folder_ckpt if x.is_file()]
|
|
safetensor_files = [x for x in models_folder_safetensors if x.is_file]
|
|
|
|
files = ckpt_files + safetensor_files
|
|
|
|
found_models = []
|
|
for file in files:
|
|
found_models.append({
|
|
'name': file.stem,
|
|
'location': str(file.resolve()).replace('\\', '/')
|
|
})
|
|
|
|
return search_folder, found_models
|
|
|
|
def _make_cache_room(self) -> None:
|
|
num_loaded_models = len(self.models)
|
|
if num_loaded_models >= self.max_loaded_models:
|
|
least_recent_model = self._pop_oldest_model()
|
|
print(f'>> Cache limit (max={self.max_loaded_models}) reached. Purging {least_recent_model}')
|
|
if least_recent_model is not None:
|
|
del self.models[least_recent_model]
|
|
gc.collect()
|
|
|
|
def print_vram_usage(self) -> None:
|
|
if self._has_cuda:
|
|
print('>> Current VRAM usage: ','%4.2fG' % (torch.cuda.memory_allocated() / 1e9))
|
|
|
|
def commit(self,config_file_path:str) -> None:
|
|
'''
|
|
Write current configuration out to the indicated file.
|
|
'''
|
|
yaml_str = OmegaConf.to_yaml(self.config)
|
|
if not os.path.isabs(config_file_path):
|
|
config_file_path = os.path.normpath(os.path.join(Globals.root,config_file_path))
|
|
tmpfile = os.path.join(os.path.dirname(config_file_path),'new_config.tmp')
|
|
with open(tmpfile, 'w', encoding="utf-8") as outfile:
|
|
outfile.write(self.preamble())
|
|
outfile.write(yaml_str)
|
|
os.replace(tmpfile,config_file_path)
|
|
|
|
def preamble(self) -> str:
|
|
'''
|
|
Returns the preamble for the config file.
|
|
'''
|
|
return textwrap.dedent('''\
|
|
# This file describes the alternative machine learning models
|
|
# available to InvokeAI script.
|
|
#
|
|
# To add a new model, follow the examples below. Each
|
|
# model requires a model config file, a weights file,
|
|
# and the width and height of the images it
|
|
# was trained on.
|
|
''')
|
|
|
|
@classmethod
|
|
def migrate_models(cls):
|
|
'''
|
|
Migrate the ~/invokeai/models directory from the legacy format used through 2.2.5
|
|
to the 2.3.0 "diffusers" version. This should be a one-time operation, called at
|
|
script startup time.
|
|
'''
|
|
# Three transformer models to check: bert, clip and safety checker
|
|
legacy_locations = [
|
|
Path('CompVis/stable-diffusion-safety-checker/models--CompVis--stable-diffusion-safety-checker'),
|
|
Path('bert-base-uncased/models--bert-base-uncased'),
|
|
Path('openai/clip-vit-large-patch14/models--openai--clip-vit-large-patch14')
|
|
]
|
|
models_dir = Path(Globals.root,'models')
|
|
legacy_layout = False
|
|
for model in legacy_locations:
|
|
legacy_layout = legacy_layout or Path(models_dir,model).exists()
|
|
if not legacy_layout:
|
|
return
|
|
|
|
print('** Legacy version <= 2.2.5 model directory layout detected. Reorganizing.')
|
|
print('** This is a quick one-time operation.')
|
|
from shutil import move, rmtree
|
|
|
|
# transformer files get moved into the hub directory
|
|
if cls._is_huggingface_hub_directory_present():
|
|
hub = global_cache_dir('hub')
|
|
else:
|
|
hub = models_dir / 'hub'
|
|
|
|
os.makedirs(hub, exist_ok=True)
|
|
for model in legacy_locations:
|
|
source = models_dir / model
|
|
dest = hub / model.stem
|
|
print(f'** {source} => {dest}')
|
|
if source.exists():
|
|
if dest.exists():
|
|
rmtree(source)
|
|
else:
|
|
move(source, dest)
|
|
|
|
# anything else gets moved into the diffusers directory
|
|
if cls._is_huggingface_hub_directory_present():
|
|
diffusers = global_cache_dir('diffusers')
|
|
else:
|
|
diffusers = models_dir / 'diffusers'
|
|
|
|
os.makedirs(diffusers, exist_ok=True)
|
|
for root, dirs, _ in os.walk(models_dir, topdown=False):
|
|
for dir in dirs:
|
|
full_path = Path(root,dir)
|
|
if full_path.is_relative_to(hub) or full_path.is_relative_to(diffusers):
|
|
continue
|
|
if Path(dir).match('models--*--*'):
|
|
dest = diffusers / dir
|
|
print(f'** {full_path} => {dest}')
|
|
if dest.exists():
|
|
rmtree(full_path)
|
|
else:
|
|
move(full_path,dest)
|
|
|
|
# now clean up by removing any empty directories
|
|
empty = [root for root, dirs, files, in os.walk(models_dir) if not len(dirs) and not len(files)]
|
|
for d in empty:
|
|
os.rmdir(d)
|
|
print('** Migration is done. Continuing...')
|
|
|
|
|
|
def _resolve_path(self, source:Union[str,Path], dest_directory:str)->Path:
|
|
resolved_path = None
|
|
if source.startswith(('http:','https:','ftp:')):
|
|
basename = os.path.basename(source)
|
|
if not os.path.isabs(dest_directory):
|
|
dest_directory = os.path.join(Globals.root,dest_directory)
|
|
dest = os.path.join(dest_directory,basename)
|
|
if download_with_progress_bar(source,dest):
|
|
resolved_path = Path(dest)
|
|
else:
|
|
if not os.path.isabs(source):
|
|
source = os.path.join(Globals.root,source)
|
|
resolved_path = Path(source)
|
|
return resolved_path
|
|
|
|
def _invalidate_cached_model(self,model_name:str) -> None:
|
|
self.offload_model(model_name)
|
|
if model_name in self.stack:
|
|
self.stack.remove(model_name)
|
|
self.models.pop(model_name,None)
|
|
|
|
def _model_to_cpu(self,model):
|
|
if self.device == 'cpu':
|
|
return model
|
|
|
|
# diffusers really really doesn't like us moving a float16 model onto CPU
|
|
import logging
|
|
logging.getLogger('diffusers.pipeline_utils').setLevel(logging.CRITICAL)
|
|
model.cond_stage_model.device = 'cpu'
|
|
model.to('cpu')
|
|
logging.getLogger('pipeline_utils').setLevel(logging.INFO)
|
|
|
|
for submodel in ('first_stage_model','cond_stage_model','model'):
|
|
try:
|
|
getattr(model,submodel).to('cpu')
|
|
except AttributeError:
|
|
pass
|
|
return model
|
|
|
|
def _model_from_cpu(self,model):
|
|
if self.device == 'cpu':
|
|
return model
|
|
|
|
model.to(self.device)
|
|
model.cond_stage_model.device = self.device
|
|
|
|
for submodel in ('first_stage_model','cond_stage_model','model'):
|
|
try:
|
|
getattr(model,submodel).to(self.device)
|
|
except AttributeError:
|
|
pass
|
|
|
|
return model
|
|
|
|
def _pop_oldest_model(self):
|
|
'''
|
|
Remove the first element of the FIFO, which ought
|
|
to be the least recently accessed model. Do not
|
|
pop the last one, because it is in active use!
|
|
'''
|
|
return self.stack.pop(0)
|
|
|
|
def _push_newest_model(self,model_name:str) -> None:
|
|
'''
|
|
Maintain a simple FIFO. First element is always the
|
|
least recent, and last element is always the most recent.
|
|
'''
|
|
with contextlib.suppress(ValueError):
|
|
self.stack.remove(model_name)
|
|
self.stack.append(model_name)
|
|
|
|
def _has_cuda(self) -> bool:
|
|
return self.device.type == 'cuda'
|
|
|
|
def _diffuser_sha256(self,name_or_path:Union[str, Path])->Union[str,bytes]:
|
|
path = None
|
|
if isinstance(name_or_path,Path):
|
|
path = name_or_path
|
|
else:
|
|
owner,repo = name_or_path.split('/')
|
|
path = Path(global_cache_dir('diffusers') / f'models--{owner}--{repo}')
|
|
if not path.exists():
|
|
return None
|
|
hashpath = path / 'checksum.sha256'
|
|
if hashpath.exists() and path.stat().st_mtime <= hashpath.stat().st_mtime:
|
|
with open(hashpath) as f:
|
|
hash = f.read()
|
|
return hash
|
|
print(' | Calculating sha256 hash of model files')
|
|
tic = time.time()
|
|
sha = hashlib.sha256()
|
|
count = 0
|
|
for root, dirs, files in os.walk(path, followlinks=False):
|
|
for name in files:
|
|
count += 1
|
|
with open(os.path.join(root,name),'rb') as f:
|
|
sha.update(f.read())
|
|
hash = sha.hexdigest()
|
|
toc = time.time()
|
|
print(f' | sha256 = {hash} ({count} files hashed in','%4.2fs)' % (toc - tic))
|
|
with open(hashpath,'w') as f:
|
|
f.write(hash)
|
|
return hash
|
|
|
|
def _cached_sha256(self,path,data) -> Union[str, bytes]:
|
|
dirname = os.path.dirname(path)
|
|
basename = os.path.basename(path)
|
|
base, _ = os.path.splitext(basename)
|
|
hashpath = os.path.join(dirname,base+'.sha256')
|
|
|
|
if os.path.exists(hashpath) and os.path.getmtime(path) <= os.path.getmtime(hashpath):
|
|
with open(hashpath) as f:
|
|
hash = f.read()
|
|
return hash
|
|
|
|
print(' | Calculating sha256 hash of weights file')
|
|
tic = time.time()
|
|
sha = hashlib.sha256()
|
|
sha.update(data)
|
|
hash = sha.hexdigest()
|
|
toc = time.time()
|
|
print(f'>> sha256 = {hash}','(%4.2fs)' % (toc - tic))
|
|
|
|
with open(hashpath,'w') as f:
|
|
f.write(hash)
|
|
return hash
|
|
|
|
def _load_vae(self, vae_config):
|
|
vae_args = {}
|
|
name_or_path = self.model_name_or_path(vae_config)
|
|
using_fp16 = self.precision == 'float16'
|
|
|
|
vae_args.update(
|
|
cache_dir=global_cache_dir('diffusers'),
|
|
local_files_only=not Globals.internet_available,
|
|
)
|
|
|
|
print(f' | Loading diffusers VAE from {name_or_path}')
|
|
if using_fp16:
|
|
vae_args.update(torch_dtype=torch.float16)
|
|
fp_args_list = [{'revision':'fp16'},{}]
|
|
else:
|
|
print(' | Using more accurate float32 precision')
|
|
fp_args_list = [{}]
|
|
|
|
vae = None
|
|
deferred_error = None
|
|
|
|
# A VAE may be in a subfolder of a model's repository.
|
|
if 'subfolder' in vae_config:
|
|
vae_args['subfolder'] = vae_config['subfolder']
|
|
|
|
for fp_args in fp_args_list:
|
|
# At some point we might need to be able to use different classes here? But for now I think
|
|
# all Stable Diffusion VAE are AutoencoderKL.
|
|
try:
|
|
vae = AutoencoderKL.from_pretrained(name_or_path, **vae_args, **fp_args)
|
|
except OSError as e:
|
|
if str(e).startswith('fp16 is not a valid'):
|
|
print(' | Half-precision version of model not available; fetching full-precision instead')
|
|
else:
|
|
deferred_error = e
|
|
if vae:
|
|
break
|
|
|
|
if not vae and deferred_error:
|
|
print(f'** Could not load VAE {name_or_path}: {str(deferred_error)}')
|
|
|
|
return vae
|
|
|
|
@staticmethod
|
|
def _is_huggingface_hub_directory_present() -> bool:
|
|
return os.getenv('HF_HOME') is not None or os.getenv('XDG_CACHE_HOME') is not None
|