mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
590 lines
23 KiB
Python
590 lines
23 KiB
Python
# Copyright (c) 2023 Borisov Sergey (https://github.com/StAlKeR7779)
|
|
|
|
from contextlib import ExitStack
|
|
from typing import List, Literal, Optional, Union
|
|
|
|
import re
|
|
import inspect
|
|
|
|
from pydantic import BaseModel, Field, validator
|
|
import torch
|
|
import numpy as np
|
|
from diffusers import ControlNetModel, DPMSolverMultistepScheduler
|
|
from diffusers.image_processor import VaeImageProcessor
|
|
from diffusers.schedulers import SchedulerMixin as Scheduler
|
|
|
|
from ..models.image import ImageCategory, ImageField, ResourceOrigin
|
|
from ...backend.model_management import ONNXModelPatcher
|
|
from ...backend.util import choose_torch_device
|
|
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
|
|
InvocationConfig, InvocationContext)
|
|
from .compel import ConditioningField
|
|
from .controlnet_image_processors import ControlField
|
|
from .image import ImageOutput
|
|
from .model import ModelInfo, UNetField, VaeField
|
|
|
|
from invokeai.app.invocations.metadata import CoreMetadata
|
|
from invokeai.backend import BaseModelType, ModelType, SubModelType
|
|
from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
|
from ...backend.stable_diffusion import PipelineIntermediateState
|
|
|
|
from tqdm import tqdm
|
|
from .model import ClipField
|
|
from .latent import LatentsField, LatentsOutput, build_latents_output, get_scheduler, SAMPLER_NAME_VALUES
|
|
from .compel import CompelOutput
|
|
|
|
|
|
ORT_TO_NP_TYPE = {
|
|
"tensor(bool)": np.bool_,
|
|
"tensor(int8)": np.int8,
|
|
"tensor(uint8)": np.uint8,
|
|
"tensor(int16)": np.int16,
|
|
"tensor(uint16)": np.uint16,
|
|
"tensor(int32)": np.int32,
|
|
"tensor(uint32)": np.uint32,
|
|
"tensor(int64)": np.int64,
|
|
"tensor(uint64)": np.uint64,
|
|
"tensor(float16)": np.float16,
|
|
"tensor(float)": np.float32,
|
|
"tensor(double)": np.float64,
|
|
}
|
|
|
|
|
|
class ONNXPromptInvocation(BaseInvocation):
|
|
type: Literal["prompt_onnx"] = "prompt_onnx"
|
|
|
|
prompt: str = Field(default="", description="Prompt")
|
|
clip: ClipField = Field(None, description="Clip to use")
|
|
|
|
def invoke(self, context: InvocationContext) -> CompelOutput:
|
|
tokenizer_info = context.services.model_manager.get_model(
|
|
**self.clip.tokenizer.dict(),
|
|
)
|
|
text_encoder_info = context.services.model_manager.get_model(
|
|
**self.clip.text_encoder.dict(),
|
|
)
|
|
with tokenizer_info as orig_tokenizer,\
|
|
text_encoder_info as text_encoder,\
|
|
ExitStack() as stack:
|
|
|
|
#loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.clip.loras]
|
|
loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
|
|
|
ti_list = []
|
|
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
|
|
name = trigger[1:-1]
|
|
try:
|
|
ti_list.append(
|
|
#stack.enter_context(
|
|
# context.services.model_manager.get_model(
|
|
# model_name=name,
|
|
# base_model=self.clip.text_encoder.base_model,
|
|
# model_type=ModelType.TextualInversion,
|
|
# )
|
|
#)
|
|
context.services.model_manager.get_model(
|
|
model_name=name,
|
|
base_model=self.clip.text_encoder.base_model,
|
|
model_type=ModelType.TextualInversion,
|
|
).context.model
|
|
)
|
|
except Exception:
|
|
#print(e)
|
|
#import traceback
|
|
#print(traceback.format_exc())
|
|
print(f"Warn: trigger: \"{trigger}\" not found")
|
|
|
|
with ONNXModelPatcher.apply_lora_text_encoder(text_encoder, loras),\
|
|
ONNXModelPatcher.apply_ti(orig_tokenizer, text_encoder, ti_list) as (tokenizer, ti_manager):
|
|
|
|
text_encoder.create_session()
|
|
|
|
# copy from
|
|
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L153
|
|
text_inputs = tokenizer(
|
|
self.prompt,
|
|
padding="max_length",
|
|
max_length=tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="np",
|
|
)
|
|
text_input_ids = text_inputs.input_ids
|
|
"""
|
|
untruncated_ids = tokenizer(prompt, padding="max_length", return_tensors="np").input_ids
|
|
|
|
if not np.array_equal(text_input_ids, untruncated_ids):
|
|
removed_text = self.tokenizer.batch_decode(
|
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
|
)
|
|
logger.warning(
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
|
)
|
|
"""
|
|
|
|
prompt_embeds = text_encoder(input_ids=text_input_ids.astype(np.int32))[0]
|
|
|
|
text_encoder.release_session()
|
|
|
|
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
|
|
|
|
# TODO: hacky but works ;D maybe rename latents somehow?
|
|
context.services.latents.save(conditioning_name, (prompt_embeds, None))
|
|
|
|
return CompelOutput(
|
|
conditioning=ConditioningField(
|
|
conditioning_name=conditioning_name,
|
|
),
|
|
)
|
|
|
|
# Text to image
|
|
class ONNXTextToLatentsInvocation(BaseInvocation):
|
|
"""Generates latents from conditionings."""
|
|
|
|
type: Literal["t2l_onnx"] = "t2l_onnx"
|
|
|
|
# Inputs
|
|
# fmt: off
|
|
positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation")
|
|
negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation")
|
|
noise: Optional[LatentsField] = Field(description="The noise to use")
|
|
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
|
|
cfg_scale: Union[float, List[float]] = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
|
|
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
|
|
unet: UNetField = Field(default=None, description="UNet submodel")
|
|
#control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
|
|
#seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
|
|
#seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
|
|
# fmt: on
|
|
|
|
@validator("cfg_scale")
|
|
def ge_one(cls, v):
|
|
"""validate that all cfg_scale values are >= 1"""
|
|
if isinstance(v, list):
|
|
for i in v:
|
|
if i < 1:
|
|
raise ValueError('cfg_scale must be greater than 1')
|
|
else:
|
|
if v < 1:
|
|
raise ValueError('cfg_scale must be greater than 1')
|
|
return v
|
|
|
|
# Schema customisation
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"tags": ["latents"],
|
|
"type_hints": {
|
|
"model": "model",
|
|
# "cfg_scale": "float",
|
|
"cfg_scale": "number"
|
|
}
|
|
},
|
|
}
|
|
|
|
# based on
|
|
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L375
|
|
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
|
c, _ = context.services.latents.get(self.positive_conditioning.conditioning_name)
|
|
uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name)
|
|
graph_execution_state = context.services.graph_execution_manager.get(
|
|
context.graph_execution_state_id)
|
|
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
|
|
if isinstance(c, torch.Tensor):
|
|
c = c.cpu().numpy()
|
|
if isinstance(uc, torch.Tensor):
|
|
uc = uc.cpu().numpy()
|
|
device = torch.device(choose_torch_device())
|
|
prompt_embeds = np.concatenate([uc, c])
|
|
|
|
latents = context.services.latents.get(self.noise.latents_name)
|
|
if isinstance(latents, torch.Tensor):
|
|
latents = latents.cpu().numpy()
|
|
|
|
# TODO: better execution device handling
|
|
latents = latents.astype(np.float16)
|
|
|
|
# get the initial random noise unless the user supplied it
|
|
do_classifier_free_guidance = True
|
|
#latents_dtype = prompt_embeds.dtype
|
|
#latents_shape = (batch_size * num_images_per_prompt, 4, height // 8, width // 8)
|
|
#if latents.shape != latents_shape:
|
|
# raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
|
|
|
scheduler = get_scheduler(
|
|
context=context,
|
|
scheduler_info=self.unet.scheduler,
|
|
scheduler_name=self.scheduler,
|
|
)
|
|
|
|
def torch2numpy(latent: torch.Tensor):
|
|
return latent.cpu().numpy()
|
|
|
|
def numpy2torch(latent, device):
|
|
return torch.from_numpy(latent).to(device)
|
|
|
|
def dispatch_progress(
|
|
self, context: InvocationContext, source_node_id: str,
|
|
intermediate_state: PipelineIntermediateState) -> None:
|
|
stable_diffusion_step_callback(
|
|
context=context,
|
|
intermediate_state=intermediate_state,
|
|
node=self.dict(),
|
|
source_node_id=source_node_id,
|
|
)
|
|
|
|
scheduler.set_timesteps(self.steps)
|
|
latents = latents * np.float64(scheduler.init_noise_sigma)
|
|
|
|
extra_step_kwargs = dict()
|
|
if "eta" in set(inspect.signature(scheduler.step).parameters.keys()):
|
|
extra_step_kwargs.update(
|
|
eta=0.0,
|
|
)
|
|
|
|
unet_info = context.services.model_manager.get_model(**self.unet.unet.dict())
|
|
|
|
with unet_info as unet,\
|
|
ExitStack() as stack:
|
|
|
|
#loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.unet.loras]
|
|
loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.unet.loras]
|
|
|
|
with ONNXModelPatcher.apply_lora_unet(unet, loras):
|
|
# TODO:
|
|
unet.create_session()
|
|
|
|
timestep_dtype = next(
|
|
(input.type for input in unet.session.get_inputs() if input.name == "timestep"), "tensor(float16)"
|
|
)
|
|
timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype]
|
|
import time
|
|
times = []
|
|
for i in tqdm(range(len(scheduler.timesteps))):
|
|
t = scheduler.timesteps[i]
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
|
|
latent_model_input = scheduler.scale_model_input(numpy2torch(latent_model_input, device), t)
|
|
latent_model_input = latent_model_input.cpu().numpy()
|
|
|
|
# predict the noise residual
|
|
timestep = np.array([t], dtype=timestep_dtype)
|
|
start_time = time.time()
|
|
noise_pred = unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds)
|
|
times.append(time.time() - start_time)
|
|
noise_pred = noise_pred[0]
|
|
|
|
# perform guidance
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
|
|
noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
scheduler_output = scheduler.step(
|
|
numpy2torch(noise_pred, device), t, numpy2torch(latents, device), **extra_step_kwargs
|
|
)
|
|
latents = torch2numpy(scheduler_output.prev_sample)
|
|
|
|
state = PipelineIntermediateState(
|
|
run_id= "test",
|
|
step=i,
|
|
timestep=timestep,
|
|
latents=scheduler_output.prev_sample
|
|
)
|
|
dispatch_progress(
|
|
self,
|
|
context=context,
|
|
source_node_id=source_node_id,
|
|
intermediate_state=state
|
|
)
|
|
|
|
# call the callback, if provided
|
|
#if callback is not None and i % callback_steps == 0:
|
|
# callback(i, t, latents)
|
|
print(times)
|
|
unet.release_session()
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
name = f'{context.graph_execution_state_id}__{self.id}'
|
|
context.services.latents.save(name, latents)
|
|
return build_latents_output(latents_name=name, latents=torch.from_numpy(latents))
|
|
|
|
# Latent to image
|
|
class ONNXLatentsToImageInvocation(BaseInvocation):
|
|
"""Generates an image from latents."""
|
|
|
|
type: Literal["l2i_onnx"] = "l2i_onnx"
|
|
|
|
# Inputs
|
|
latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
|
|
vae: VaeField = Field(default=None, description="Vae submodel")
|
|
metadata: Optional[CoreMetadata] = Field(default=None, description="Optional core metadata to be written to the image")
|
|
#tiled: bool = Field(default=False, description="Decode latents by overlaping tiles(less memory consumption)")
|
|
|
|
# Schema customisation
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"tags": ["latents", "image"],
|
|
},
|
|
}
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
latents = context.services.latents.get(self.latents.latents_name)
|
|
|
|
if self.vae.vae.submodel != SubModelType.VaeDecoder:
|
|
raise Exception(f"Expected vae_decoder, found: {self.vae.vae.model_type}")
|
|
|
|
vae_info = context.services.model_manager.get_model(
|
|
**self.vae.vae.dict(),
|
|
)
|
|
|
|
# clear memory as vae decode can request a lot
|
|
torch.cuda.empty_cache()
|
|
|
|
with vae_info as vae:
|
|
vae.create_session()
|
|
|
|
# copied from
|
|
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L427
|
|
latents = 1 / 0.18215 * latents
|
|
# image = self.vae_decoder(latent_sample=latents)[0]
|
|
# it seems likes there is a strange result for using half-precision vae decoder if batchsize>1
|
|
image = np.concatenate(
|
|
[vae(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])]
|
|
)
|
|
|
|
image = np.clip(image / 2 + 0.5, 0, 1)
|
|
image = image.transpose((0, 2, 3, 1))
|
|
image = VaeImageProcessor.numpy_to_pil(image)[0]
|
|
|
|
vae.release_session()
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
image_dto = context.services.images.create(
|
|
image=image,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
metadata=self.metadata.dict() if self.metadata else None,
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
class ONNXModelLoaderOutput(BaseInvocationOutput):
|
|
"""Model loader output"""
|
|
|
|
#fmt: off
|
|
type: Literal["model_loader_output_onnx"] = "model_loader_output_onnx"
|
|
|
|
unet: UNetField = Field(default=None, description="UNet submodel")
|
|
clip: ClipField = Field(default=None, description="Tokenizer and text_encoder submodels")
|
|
vae_decoder: VaeField = Field(default=None, description="Vae submodel")
|
|
vae_encoder: VaeField = Field(default=None, description="Vae submodel")
|
|
#fmt: on
|
|
|
|
class ONNXSD1ModelLoaderInvocation(BaseInvocation):
|
|
"""Loading submodels of selected model."""
|
|
|
|
type: Literal["sd1_model_loader_onnx"] = "sd1_model_loader_onnx"
|
|
|
|
model_name: str = Field(default="", description="Model to load")
|
|
# TODO: precision?
|
|
|
|
# Schema customisation
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"tags": ["model", "loader"],
|
|
"type_hints": {
|
|
"model_name": "model" # TODO: rename to model_name?
|
|
}
|
|
},
|
|
}
|
|
|
|
def invoke(self, context: InvocationContext) -> ONNXModelLoaderOutput:
|
|
|
|
model_name = "stable-diffusion-v1-5"
|
|
base_model = BaseModelType.StableDiffusion1
|
|
|
|
# TODO: not found exceptions
|
|
if not context.services.model_manager.model_exists(
|
|
model_name=model_name,
|
|
base_model=BaseModelType.StableDiffusion1,
|
|
model_type=ModelType.ONNX,
|
|
):
|
|
raise Exception(f"Unkown model name: {model_name}!")
|
|
|
|
|
|
return ONNXModelLoaderOutput(
|
|
unet=UNetField(
|
|
unet=ModelInfo(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=ModelType.ONNX,
|
|
submodel=SubModelType.UNet,
|
|
),
|
|
scheduler=ModelInfo(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=ModelType.ONNX,
|
|
submodel=SubModelType.Scheduler,
|
|
),
|
|
loras=[],
|
|
),
|
|
clip=ClipField(
|
|
tokenizer=ModelInfo(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=ModelType.ONNX,
|
|
submodel=SubModelType.Tokenizer,
|
|
),
|
|
text_encoder=ModelInfo(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=ModelType.ONNX,
|
|
submodel=SubModelType.TextEncoder,
|
|
),
|
|
loras=[],
|
|
),
|
|
vae_decoder=VaeField(
|
|
vae=ModelInfo(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=ModelType.ONNX,
|
|
submodel=SubModelType.VaeDecoder,
|
|
),
|
|
),
|
|
vae_encoder=VaeField(
|
|
vae=ModelInfo(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=ModelType.ONNX,
|
|
submodel=SubModelType.VaeEncoder,
|
|
),
|
|
)
|
|
)
|
|
|
|
class OnnxModelField(BaseModel):
|
|
"""Onnx model field"""
|
|
|
|
model_name: str = Field(description="Name of the model")
|
|
base_model: BaseModelType = Field(description="Base model")
|
|
|
|
class OnnxModelLoaderInvocation(BaseInvocation):
|
|
"""Loads a main model, outputting its submodels."""
|
|
|
|
type: Literal["onnx_model_loader"] = "onnx_model_loader"
|
|
|
|
model: OnnxModelField = Field(description="The model to load")
|
|
# TODO: precision?
|
|
|
|
# Schema customisation
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "Onnx Model Loader",
|
|
"tags": ["model", "loader"],
|
|
"type_hints": {"model": "model"},
|
|
},
|
|
}
|
|
|
|
def invoke(self, context: InvocationContext) -> ONNXModelLoaderOutput:
|
|
base_model = self.model.base_model
|
|
model_name = self.model.model_name
|
|
model_type = ModelType.ONNX
|
|
|
|
# TODO: not found exceptions
|
|
if not context.services.model_manager.model_exists(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
):
|
|
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
|
|
|
|
"""
|
|
if not context.services.model_manager.model_exists(
|
|
model_name=self.model_name,
|
|
model_type=SDModelType.Diffusers,
|
|
submodel=SDModelType.Tokenizer,
|
|
):
|
|
raise Exception(
|
|
f"Failed to find tokenizer submodel in {self.model_name}! Check if model corrupted"
|
|
)
|
|
|
|
if not context.services.model_manager.model_exists(
|
|
model_name=self.model_name,
|
|
model_type=SDModelType.Diffusers,
|
|
submodel=SDModelType.TextEncoder,
|
|
):
|
|
raise Exception(
|
|
f"Failed to find text_encoder submodel in {self.model_name}! Check if model corrupted"
|
|
)
|
|
|
|
if not context.services.model_manager.model_exists(
|
|
model_name=self.model_name,
|
|
model_type=SDModelType.Diffusers,
|
|
submodel=SDModelType.UNet,
|
|
):
|
|
raise Exception(
|
|
f"Failed to find unet submodel from {self.model_name}! Check if model corrupted"
|
|
)
|
|
"""
|
|
|
|
return ONNXModelLoaderOutput(
|
|
unet=UNetField(
|
|
unet=ModelInfo(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
submodel=SubModelType.UNet,
|
|
),
|
|
scheduler=ModelInfo(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
submodel=SubModelType.Scheduler,
|
|
),
|
|
loras=[],
|
|
),
|
|
clip=ClipField(
|
|
tokenizer=ModelInfo(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
submodel=SubModelType.Tokenizer,
|
|
),
|
|
text_encoder=ModelInfo(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
submodel=SubModelType.TextEncoder,
|
|
),
|
|
loras=[],
|
|
skipped_layers=0,
|
|
),
|
|
vae_decoder=VaeField(
|
|
vae=ModelInfo(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
submodel=SubModelType.VaeDecoder,
|
|
),
|
|
),
|
|
vae_encoder=VaeField(
|
|
vae=ModelInfo(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
submodel=SubModelType.VaeEncoder,
|
|
),
|
|
)
|
|
) |