InvokeAI/ldm/invoke/args.py
Kevin Turner 6fdbc1978d
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class

* spike: proof of concept using diffusers for txt2img

* doc: type hints for Generator

* refactor(model_cache): factor out load_ckpt

* model_cache: add ability to load a diffusers model pipeline

and update associated things in Generate & Generator to not instantly fail when that happens

* model_cache: fix model default image dimensions

* txt2img: support switching diffusers schedulers

* diffusers: let the scheduler do its scaling of the initial latents

Remove IPNDM scheduler; it is not behaving.

* web server: update image_progress callback for diffusers data

* diffusers: restore prompt weighting feature

* diffusers: fix set-sampler error following model switch

* diffusers: use InvokeAIDiffuserComponent for conditioning

* cross_attention_control: stub (no-op) implementations for diffusers

* model_cache: let offload_model work with DiffusionPipeline, sorta.

* models.yaml.example: add diffusers-format model, set as default

* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it

* environment-mac: upgrade to diffusers 0.7 (from 0.6)

this was already done for linux; mac must have been lost in the merge.

* preload_models: explicitly load diffusers models

In non-interactive mode too, as long as you're logged in.

* fix(model_cache): don't check `model.config` in diffusers format

clean-up from recent merge.

* diffusers integration: support img2img

* dev: upgrade to diffusers 0.8 (from 0.7.1)

We get to remove some code by using methods that were factored out in the base class.

* refactor: remove backported img2img.get_timesteps

now that we can use it directly from diffusers 0.8.1

* ci: use diffusers model

* dev: upgrade to diffusers 0.9 (from 0.8.1)

* lint: correct annotations for Python 3.9.

* lint: correct AttributeError.name reference for Python 3.9.

* CI: prefer diffusers-1.4 because it no longer requires a token

The RunwayML models still do.

* build: there's yet another place to update requirements?

* configure: try to download models even without token

Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)

* configure: add troubleshooting info for config-not-found

* fix(configure): prepend root to config path

* fix(configure): remove second `default: true` from models example

* CI: simplify test-on-push logic now that we don't need secrets

The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.

* create an embedding_manager for diffusers

* internal: avoid importing diffusers DummyObject

see https://github.com/huggingface/diffusers/issues/1479

* fix "config attributes…not expected" diffusers warnings.

* fix deprecated scheduler construction

* work around an apparent MPS torch bug that causes conditioning to have no effect

* 🚧 post-rebase repair

* preliminary support for outpainting (no masking yet)

* monkey-patch diffusers.attention and use Invoke lowvram code

* add always_use_cpu arg to bypass MPS

* add cross-attention control support to diffusers (fails on MPS)

For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.

* diffusers support for the inpainting model

* fix debug_image to not crash with non-RGB images.

* inpainting for the normal model [WIP]

This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.

* fix off-by-one bug in cross-attention-control (#1774)

prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).

based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.

* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary

* inpainting for the normal model. I think it works this time.

* diffusers: reset num_vectors_per_token

sync with 44a0055571

* diffusers: txt2img2img (hires_fix)

with so much slicing and dicing of pipeline methods to stitch them together

* refactor(diffusers): reduce some code duplication amongst the different tasks

* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks

* diffusers: enable DPMSolver++ scheduler

* diffusers: upgrade to diffusers 0.10, add Heun scheduler

* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers

* CI: default to diffusers-1.5 now that runwayml token requirement is gone

* diffusers: update to 0.10 (and transformers to 4.25)

* diffusers: use xformers when available

diffusers no longer auto-enables this as of 0.10.2.

* diffusers: make masked img2img behave better with multi-step schedulers

re-randomizing the noise each step was confusing them.

* diffusers: work more better with more models.

fixed relative path problem with local models.

fixed models on hub not always having a `fp16` branch.

* diffusers: stopgap fix for attention_maps_callback crash after recent merge

* fixup import merge conflicts

correction for 061c5369a2

* test: add tests/inpainting inputs for masked img2img

* diffusers(AddsMaskedGuidance): partial fix for k-schedulers

Prevents them from crashing, but results are still hot garbage.

* fix --safety_checker arg parsing

and add note to diffusers loader about where safety checker gets called

* generate: fix import error

* CI: don't try to read the old init location

* diffusers: support loading an alternate VAE

* CI: remove sh-syntax if-statement so it doesn't crash powershell

* CI: fold strings in yaml because backslash is not line-continuation in powershell

* attention maps callback stuff for diffusers

* build: fix syntax error in environment-mac

* diffusers: add INITIAL_MODELS with diffusers-compatible repos

* re-enable the embedding manager; closes #1778

* Squashed commit of the following:

commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 15:43:07 2022 +0100

    import new load handling from EmbeddingManager and cleanup

commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 15:09:53 2022 +0100

    Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager

commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 15:08:01 2022 +0100

    Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager

commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 15:04:28 2022 +0100

    cleanup and add performance notes

commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 14:45:07 2022 +0100

    fix bug and update unit tests

commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 14:28:29 2022 +0100

    textual inversion manager seems to work

commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 11:58:03 2022 +0100

    Merge branch 'main' into feature_textual_inversion_mgr

commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 11:54:10 2022 +0100

    use position embeddings

commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 11:53:47 2022 +0100

    Don't crash CLI on exceptions

commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 11:11:55 2022 +0100

    add missing position_embeddings

commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date:   Fri Dec 16 13:33:25 2022 +0100

    debugging why it don't work

commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date:   Fri Dec 16 13:21:33 2022 +0100

    debugging why it don't work

commit 664a6e9e14
Author: Damian Stewart <d@damianstewart.com>
Date:   Fri Dec 16 12:48:38 2022 +0100

    use TextualInversionManager in place of embeddings (wip, doesn't work)

commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date:   Fri Dec 16 12:48:38 2022 +0100

    use TextualInversionManager in place of embeddings (wip, doesn't work)

commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date:   Fri Dec 16 02:37:31 2022 +0100

    Merge branch 'feature_textual_inversion_mgr' into dev/diffusers

commit 023df37eff
Author: Damian Stewart <d@damianstewart.com>
Date:   Fri Dec 16 02:36:54 2022 +0100

    cleanup

commit 05fac594ea
Author: Damian Stewart <d@damianstewart.com>
Date:   Fri Dec 16 02:07:49 2022 +0100

    tweak error checking

commit 009f32ed39
Author: damian <null@damianstewart.com>
Date:   Thu Dec 15 21:29:47 2022 +0100

    unit tests passing for embeddings with vector length >1

commit beb1b08d9a
Author: Damian Stewart <d@damianstewart.com>
Date:   Thu Dec 15 13:39:09 2022 +0100

    more explicit equality tests when overwriting

commit 44d8a5a7c8
Author: Damian Stewart <d@damianstewart.com>
Date:   Thu Dec 15 13:30:13 2022 +0100

    wip textual inversion manager (unit tests passing for 1v embedding overwriting)

commit 417c2b57d9
Author: Damian Stewart <d@damianstewart.com>
Date:   Thu Dec 15 12:30:55 2022 +0100

    wip textual inversion manager (unit tests passing for base stuff + padding)

commit 2e80872e3b
Author: Damian Stewart <d@damianstewart.com>
Date:   Thu Dec 15 10:57:57 2022 +0100

    wip new TextualInversionManager

* stop using WeightedFrozenCLIPEmbedder

* store diffusion models locally

- configure_invokeai.py reconfigured to store diffusion models rather than
  CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.

* allow non-local files during development

* path takes priority over repo_id

* MVP for model_cache and configure_invokeai

- Feature complete (almost)

- configure_invokeai.py downloads both .ckpt and diffuser models,
  along with their VAEs. Both types of download are controlled by
  a unified INITIAL_MODELS.yaml file.

- model_cache can load both type of model and switches back and forth
  in CPU. No memory leaks detected

TO DO:

  1. I have not yet turned on the LocalOnly flag for diffuser models, so
     the code will check the Hugging Face repo for updates before using the
     locally cached models. This will break firewalled systems. I am thinking
     of putting in a global check for internet connectivity at startup time
     and setting the LocalOnly flag based on this. It would be good to check
     updates if there is connectivity.

  2. I have not gone completely through INITIAL_MODELS.yaml to check which
     models are available as diffusers and which are not. So models like
     PaperCut and VoxelArt may not load properly. The runway and stability
     models are checked, as well as the Trinart models.

  3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml

REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:

  1. When loading a .ckpt file there are lots of messages like this:

     Warning! ldm.modules.attention.CrossAttention is no longer being
     maintained. Please use InvokeAICrossAttention instead.

     I'm not sure how to address this.

  2. The ckpt models ***don't actually run*** due to the lack of special-case
     support for them in the generator objects. For example, here's the hard
     crash you get when you run txt2img against the legacy waifu-diffusion-1.3
     model:
```
     >> An error occurred:
     Traceback (most recent call last):
       File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
           main_loop(gen, opt)
      File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
         gen.prompt2image(
      File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
	 results = generator.generate(
      File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
         image = make_image(x_T)
      File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
         pipeline_output = pipeline.image_from_embeddings(
      File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
         raise AttributeError("'{}' object has no attribute '{}'".format(
     AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```

  3. The inpainting diffusion model isn't working. Here's the output of "banana
     sushi" when inpainting-1.5 is loaded:

```
    Traceback (most recent call last):
      File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
        results = generator.generate(
      File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
        image = make_image(x_T)
      File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
        pipeline_output = pipeline.image_from_embeddings(
      File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
        result_latents, result_attention_map_saver = self.latents_from_embeddings(
      File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
        result: PipelineIntermediateState = infer_latents_from_embeddings(
      File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
        for result in self.generator_method(*args, **kwargs):
      File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
        step_output = self.step(batched_t, latents, guidance_scale,
      File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
        return func(*args, **kwargs)
      File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
        step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
      File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
        pred_original_sample = sample - sigma * model_output
    RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```

* proper support for float32/float16

- configure script now correctly detects user's preference for
  fp16/32 and downloads the correct diffuser version. If fp16
  version not available, falls back to fp32 version.

- misc code cleanup and simplification in model_cache

* add on-the-fly conversion of .ckpt to diffusers models

1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.

2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.

User experience on the CLI is this:

```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
      This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...

>> New configuration:
sd-v1-4:
  description: Optimized version of sd-v1-4
  format: diffusers
  path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4

OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage:  2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
  | Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
 disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
  | training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```

* add parallel set of generator files for ckpt legacy generation

* generation using legacy ckpt models now working

* diffusers: fix missing attention_maps_callback

fix for 23eb80b404

* associate legacy CrossAttention with .ckpt models

* enable autoconvert

New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.

Works like this:

   invoke.py --autoconvert /path/to/weights/directory

In ModelCache added two new methods:

  autoconvert_weights(config_path, weights_directory_path, models_directory_path)
  convert_and_import(ckpt_path, diffuser_path)

* diffusers: update to diffusers 0.11 (from 0.10.2)

* fix vae loading & width/height calculation

* refactor: encapsulate these conditioning data into one container

* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function

* add support for safetensors and accelerate

* set local_files_only when internet unreachable

* diffusers: fix error-handling path when model repo has no fp16 branch

* fix generatorinpaint error

Fixes :
  "ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
   https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318

* quench diffuser safety-checker warning

* diffusers: support stochastic DDIM eta parameter

* fix conda env creation on macos

* fix cross-attention with diffusers 0.11

* diffusers: the VAE needs to be tiling as well as the U-Net

* diffusers: comment on subfolders

* diffusers: embiggen!

* diffusers: make model_cache.list_models serializable

* diffusers(inpaint): restore scaling functionality

* fix requirements clash between numba and numpy 1.24

* diffusers: allow inpainting model to do non-inpainting tasks

* start expanding model_cache functionality

* add import_ckpt_model() and import_diffuser_model() methods to model_manager

- in addition, model_cache.py is now renamed to model_manager.py

* allow "recommended" flag to be optional in INITIAL_MODELS.yaml

* configure_invokeai now downloads VAE diffusers in advance

* rename ModelCache to ModelManager

* remove support for `repo_name` in models.yaml

* check for and refuse to load embeddings trained on incompatible models

* models.yaml.example: s/repo_name/repo_id

and remove extra INITIAL_MODELS now that the main one has diffusers models in it.

* add MVP textual inversion script

* refactor(InvokeAIDiffuserComponent): factor out _combine()

* InvokeAIDiffuserComponent: implement threshold

* InvokeAIDiffuserComponent: diagnostic logs for threshold

...this does not look right

* add a curses-based frontend to textual inversion

- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
  to requirements yet

* add curses-based interface for textual inversion

* fix crash in convert_and_import()

- This corrects a "local variable referenced before assignment" error
  in model_manager.convert_and_import()

* potential workaround for no 'state_dict' key error

- As reported in https://github.com/huggingface/diffusers/issues/1876

* create TI output dir if needed

* Update environment-lin-cuda.yml (#2159)

Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~

* diffusers: update sampler-to-scheduler mapping

based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672

* improve user exp for ckt to diffusers conversion

- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion

* web: adapt progress callback to deal with old generator or new diffusers pipeline

* clean-up model_manager code

- add_model() verified to work for .ckpt local paths,
  .ckpt remote URLs, diffusers local paths, and
  diffusers repo_ids

- convert_and_import() verified to work for local and
  remove .ckpt files

* handle edge cases for import_model() and convert_model()

* add support for safetensor .ckpt files

* fix name error

* code cleanup with pyflake

* improve model setting behavior

- If the user enters an invalid model name at startup time, will not
  try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
  line prompt.

* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args

* exclude dev/diffusers from "fail for draft PRs"

* disable "fail on PR jobs"

* re-add `--skip-sd-weights` since no space

* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`

* clean up model load failure handling

- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
  successfully load.
- Restart invokeai after reconfiguration.

* further edge-case handling

1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all

* fix incorrect model status listing

- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
   - Passing an invalid model name to generate.set_model() will return
     a KeyError
   - All other exceptions are returned as the appropriate Exception

* CI: do download weights (if not already cached)

* diffusers: fix scheduler loading in offline mode

* CI: fix model name (no longer has `diffusers-` prefix)

* Update txt2img2img.py (#2256)

* fixes to share models with HuggingFace cache system

- If HF_HOME environment variable is defined, then all huggingface models
  are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
  This is equivalent to setting HF_HOME to ~/invokeai/models

A future commit will add a migration mechanism so that this change doesn't
break previous installs.

* feat - make model storage compatible with hugging face caching system

This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.

- If the HF_HOME environment variable is not set, then models are
  cached in ~/invokeai/models in a format that is identical to the
  HuggingFace cache.

- If HF_HOME is set, then models are cached wherever HF_HOME points.

- To enable sharing with other HuggingFace library clients, set
  HF_HOME to ~/.cache/huggingface to set the default cache location
  or to ~/invokeai/models to have huggingface cache inside InvokeAI.

* fixes to share models with HuggingFace cache system

    - If HF_HOME environment variable is defined, then all huggingface models
      are stored in that directory following the standard conventions.
    - For seamless interoperability, set HF_HOME to ~/.cache/huggingface
    - If HF_HOME not defined, then models are stored in ~/invokeai/models.
      This is equivalent to setting HF_HOME to ~/invokeai/models

    A future commit will add a migration mechanism so that this change doesn't
    break previous installs.

* fix error "no attribute CkptInpaint"

* model_manager.list_models() returns entire model config stanza+status

* Initial Draft - Model Manager Diffusers

* added hash function to diffusers

* implement sha256 hashes on diffusers models

* Add Model Manager Support for Diffusers

* fix various problems with model manager

- in cli import functions, fix not enough values to unpack from
  _get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser

* rebuild frontend

* fix dictconfig-not-serializable issue

* fix NoneType' object is not subscriptable crash in model_manager

* fix "str has no attribute get" error in model_manager list_models()

* Add path and repo_id support for Diffusers Model Manager

Also fixes bugs

* Fix tooltip IT localization not working

* Add Version Number To WebUI

* Optimize Model Search

* Fix incorrect font on the Model Manager UI

* Fix image degradation on merge fixes - [Experimental]

This change should effectively fix a couple of things.

- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.

So far there are no side effects for this. If any, please report.

* Add local model filtering for Diffusers / Checkpoints

* Go to home on modal close for the Add Modal UI

* Styling Fixes

* Model Manager Diffusers Localization Update

* Add Safe Tensor scanning to Model Manager

* Fix model edit form dispatching string values instead of numbers.

* Resolve VAE handling / edge cases for supplied repos

* defer injecting tokens for textual inversions until they're used for the first time

* squash a console warning

* implement model migration check

* add_model() overwrites previous config rather than merges

* fix model config file attribute merging

* fix precision handling in textual inversion script

* allow ckpt conversion script to work with safetensors .ckpts

Applied patch here:
beb932c5d1

* fix name "args" is not defined crash in textual_inversion_training

* fix a second NameError: name 'args' is not defined crash

* fix loading of the safety checker from the global cache dir

* add installation step to textual inversion frontend

- After a successful training run, the script will copy learned_embeds.bin
  to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
  (which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.

* don't crash out on incompatible embeddings

- put try: blocks around places where the system tries to load an embedding
  which is incompatible with the currently loaded model

* add support for checkpoint resuming

* textual inversion preferences are saved and restored between sessions

- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
  bug in textual_inversion_training.py?

* copy learned_embeddings.bin into right location

* add front end for diffusers model merging

- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
  with the "+" character in their names.

* improve inpainting experience

- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py

* update environment*yml

* tweak instructions to install HuggingFace token

* bump version number

* enhance update scripts

- update scripts will now fetch new INITIAL_MODELS.yaml so that
  configure_invokeai.py will know about the diffusers versions.

* enhance invoke.sh/invoke.bat launchers

- added configure_invokeai.py to menu
- menu defaults to browser-based invoke

* remove conda workflow (#2321)

* fix `token_ids has shape torch.Size([79]) - expected [77]`

* update CHANGELOG.md with 2.3.* info

- Add information on how formats have changed and the upgrade process.
- Add short bug list.

Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 09:22:46 -05:00

1284 lines
48 KiB
Python

"""Helper class for dealing with image generation arguments.
The Args class parses both the command line (shell) arguments, as well as the
command string passed at the invoke> prompt. It serves as the definitive repository
of all the arguments used by Generate and their default values, and implements the
preliminary metadata standards discussed here:
https://github.com/lstein/stable-diffusion/issues/266
To use:
opt = Args()
# Read in the command line options:
# this returns a namespace object like the underlying argparse library)
# You do not have to use the return value, but you can check it against None
# to detect illegal arguments on the command line.
args = opt.parse_args()
if not args:
print('oops')
sys.exit(-1)
# read in a command passed to the invoke> prompt:
opts = opt.parse_cmd('do androids dream of electric sheep? -H256 -W1024 -n4')
# The Args object acts like a namespace object
print(opt.model)
You can set attributes in the usual way, use vars(), etc.:
opt.model = 'something-else'
do_something(**vars(a))
It is helpful in saving metadata:
# To get a json representation of all the values, allowing
# you to override any values dynamically
j = opt.json(seed=42)
# To get the prompt string with the switches, allowing you
# to override any values dynamically
j = opt.dream_prompt_str(seed=42)
If you want to access the namespace objects from the shell args or the
parsed command directly, you may use the values returned from the
original calls to parse_args() and parse_cmd(), or get them later
using the _arg_switches and _cmd_switches attributes. This can be
useful if both the args and the command contain the same attribute and
you wish to apply logic as to which one to use. For example:
a = Args()
args = a.parse_args()
opts = a.parse_cmd(string)
do_grid = args.grid or opts.grid
To add new attributes, edit the _create_arg_parser() and
_create_dream_cmd_parser() methods.
**Generating and retrieving sd-metadata**
To generate a dict representing RFC266 metadata:
metadata = metadata_dumps(opt,<seeds,model_hash,postprocesser>)
This will generate an RFC266 dictionary that can then be turned into a JSON
and written to the PNG file. The optional seeds, weights, model_hash and
postprocesser arguments are not available to the opt object and so must be
provided externally. See how invoke.py does it.
Note that this function was originally called format_metadata() and a wrapper
is provided that issues a deprecation notice.
To retrieve a (series of) opt objects corresponding to the metadata, do this:
opt_list = metadata_loads(metadata)
The metadata should be pulled out of the PNG image. pngwriter has a method
retrieve_metadata that will do this, or you can do it in one swell foop
with metadata_from_png():
opt_list = metadata_from_png('/path/to/image_file.png')
"""
import argparse
import base64
import copy
import functools
import hashlib
import json
import os
import pydoc
import re
import shlex
import sys
import ldm.invoke
import ldm.invoke.pngwriter
from ldm.invoke.globals import Globals
from ldm.invoke.prompt_parser import split_weighted_subprompts
from argparse import Namespace
from pathlib import Path
APP_ID = ldm.invoke.__app_id__
APP_NAME = ldm.invoke.__app_name__
APP_VERSION = ldm.invoke.__version__
SAMPLER_CHOICES = [
'ddim',
'k_dpm_2_a',
'k_dpm_2',
'k_dpmpp_2_a',
'k_dpmpp_2',
'k_euler_a',
'k_euler',
'k_heun',
'k_lms',
'plms',
# diffusers:
"pndm",
]
PRECISION_CHOICES = [
'auto',
'float32',
'autocast',
'float16',
]
class ArgFormatter(argparse.RawTextHelpFormatter):
# use defined argument order to display usage
def _format_usage(self, usage, actions, groups, prefix):
if prefix is None:
prefix = 'usage: '
# if usage is specified, use that
if usage is not None:
usage = usage % dict(prog=self._prog)
# if no optionals or positionals are available, usage is just prog
elif usage is None and not actions:
usage = 'invoke>'
elif usage is None:
prog='invoke>'
# build full usage string
action_usage = self._format_actions_usage(actions, groups) # NEW
usage = ' '.join([s for s in [prog, action_usage] if s])
# omit the long line wrapping code
# prefix with 'usage:'
return '%s%s\n\n' % (prefix, usage)
class PagingArgumentParser(argparse.ArgumentParser):
'''
A custom ArgumentParser that uses pydoc to page its output.
It also supports reading defaults from an init file.
'''
def print_help(self, file=None):
text = self.format_help()
pydoc.pager(text)
def convert_arg_line_to_args(self, arg_line):
return shlex.split(arg_line,comments=True)
class Args(object):
def __init__(self,arg_parser=None,cmd_parser=None):
'''
Initialize new Args class. It takes two optional arguments, an argparse
parser for switches given on the shell command line, and an argparse
parser for switches given on the invoke> CLI line. If one or both are
missing, it creates appropriate parsers internally.
'''
self._arg_parser = arg_parser or self._create_arg_parser()
self._cmd_parser = cmd_parser or self._create_dream_cmd_parser()
self._arg_switches = self.parse_cmd('') # fill in defaults
self._cmd_switches = self.parse_cmd('') # fill in defaults
def parse_args(self):
'''Parse the shell switches and store.'''
try:
sysargs = sys.argv[1:]
# pre-parse before we do any initialization to get root directory
# and intercept --version request
switches = self._arg_parser.parse_args(sysargs)
if switches.version:
print(f'{ldm.invoke.__app_name__} {ldm.invoke.__version__}')
sys.exit(0)
print('* Initializing, be patient...')
Globals.root = Path(os.path.abspath(switches.root_dir or Globals.root))
Globals.try_patchmatch = switches.patchmatch
# now use root directory to find the init file
initfile = os.path.expanduser(os.path.join(Globals.root,Globals.initfile))
legacyinit = os.path.expanduser('~/.invokeai')
if os.path.exists(initfile):
print(f'>> Initialization file {initfile} found. Loading...',file=sys.stderr)
sysargs.insert(0,f'@{initfile}')
elif os.path.exists(legacyinit):
print(f'>> WARNING: Old initialization file found at {legacyinit}. This location is deprecated. Please move it to {Globals.root}/invokeai.init.')
sysargs.insert(0,f'@{legacyinit}')
self._arg_switches = self._arg_parser.parse_args(sysargs)
return self._arg_switches
except Exception as e:
print(f'An exception has occurred: {e}')
return None
def parse_cmd(self,cmd_string):
'''Parse a invoke>-style command string '''
# handle the case in which the first token is a switch
if cmd_string.startswith('-'):
prompt = ''
switches = cmd_string
# handle the case in which the prompt is enclosed by quotes
elif cmd_string.startswith('"'):
a = shlex.split(cmd_string,comments=True)
prompt = a[0]
switches = shlex.join(a[1:])
else:
# no initial quote, so get everything up to the first thing
# that looks like a switch
if cmd_string.startswith('-'):
prompt = ''
switches = cmd_string
else:
match = re.match('^(.+?)\s(--?[a-zA-Z].+)',cmd_string)
if match:
prompt,switches = match.groups()
else:
prompt = cmd_string
switches = ''
try:
self._cmd_switches = self._cmd_parser.parse_args(shlex.split(switches,comments=True))
setattr(self._cmd_switches,'prompt',prompt)
return self._cmd_switches
except:
return None
def json(self,**kwargs):
return json.dumps(self.to_dict(**kwargs))
def to_dict(self,**kwargs):
a = vars(self)
a.update(kwargs)
return a
# Isn't there a more automated way of doing this?
# Ideally we get the switch strings out of the argparse objects,
# but I don't see a documented API for this.
def dream_prompt_str(self,**kwargs):
"""Normalized dream_prompt."""
a = vars(self)
a.update(kwargs)
switches = list()
prompt = a['prompt']
prompt.replace('"','\\"')
switches.append(prompt)
switches.append(f'-s {a["steps"]}')
switches.append(f'-S {a["seed"]}')
switches.append(f'-W {a["width"]}')
switches.append(f'-H {a["height"]}')
switches.append(f'-C {a["cfg_scale"]}')
if a['karras_max'] is not None:
switches.append(f'--karras_max {a["karras_max"]}')
if a['perlin'] > 0:
switches.append(f'--perlin {a["perlin"]}')
if a['threshold'] > 0:
switches.append(f'--threshold {a["threshold"]}')
if a['grid']:
switches.append('--grid')
if a['seamless']:
switches.append('--seamless')
if a['hires_fix']:
switches.append('--hires_fix')
# img2img generations have parameters relevant only to them and have special handling
if a['init_img'] and len(a['init_img'])>0:
switches.append(f'-I {a["init_img"]}')
switches.append(f'-A {a["sampler_name"]}')
if a['fit']:
switches.append('--fit')
if a['init_mask'] and len(a['init_mask'])>0:
switches.append(f'-M {a["init_mask"]}')
if a['init_color'] and len(a['init_color'])>0:
switches.append(f'--init_color {a["init_color"]}')
if a['strength'] and a['strength']>0:
switches.append(f'-f {a["strength"]}')
if a['inpaint_replace']:
switches.append('--inpaint_replace')
if a['text_mask']:
switches.append(f'-tm {" ".join([str(u) for u in a["text_mask"]])}')
else:
switches.append(f'-A {a["sampler_name"]}')
# facetool-specific parameters, only print if running facetool
if a['facetool_strength']:
switches.append(f'-G {a["facetool_strength"]}')
switches.append(f'-ft {a["facetool"]}')
if a["facetool"] == "codeformer":
switches.append(f'-cf {a["codeformer_fidelity"]}')
if a['outcrop']:
switches.append(f'-c {" ".join([str(u) for u in a["outcrop"]])}')
# esrgan-specific parameters
if a['upscale']:
switches.append(f'-U {" ".join([str(u) for u in a["upscale"]])}')
# embiggen parameters
if a['embiggen']:
switches.append(f'--embiggen {" ".join([str(u) for u in a["embiggen"]])}')
if a['embiggen_tiles']:
switches.append(f'--embiggen_tiles {" ".join([str(u) for u in a["embiggen_tiles"]])}')
if a['embiggen_strength']:
switches.append(f'--embiggen_strength {a["embiggen_strength"]}')
# outpainting parameters
if a['out_direction']:
switches.append(f'-D {" ".join([str(u) for u in a["out_direction"]])}')
# LS: slight semantic drift which needs addressing in the future:
# 1. Variations come out of the stored metadata as a packed string with the keyword "variations"
# 2. However, they come out of the CLI (and probably web) with the keyword "with_variations" and
# in broken-out form. Variation (1) should be changed to comply with (2)
if a['with_variations'] and len(a['with_variations'])>0:
formatted_variations = ','.join(f'{seed}:{weight}' for seed, weight in (a["with_variations"]))
switches.append(f'-V {formatted_variations}')
if 'variations' in a and len(a['variations'])>0:
switches.append(f'-V {a["variations"]}')
return ' '.join(switches)
def __getattribute__(self,name):
'''
Returns union of command-line arguments and dream_prompt arguments,
with the latter superseding the former.
'''
cmd_switches = None
arg_switches = None
try:
cmd_switches = object.__getattribute__(self,'_cmd_switches')
arg_switches = object.__getattribute__(self,'_arg_switches')
except AttributeError:
pass
if cmd_switches and arg_switches and name=='__dict__':
return self._merge_dict(
arg_switches.__dict__,
cmd_switches.__dict__,
)
try:
return object.__getattribute__(self,name)
except AttributeError:
pass
if not hasattr(cmd_switches,name) and not hasattr(arg_switches,name):
raise AttributeError
value_arg,value_cmd = (None,None)
try:
value_cmd = getattr(cmd_switches,name)
except AttributeError:
pass
try:
value_arg = getattr(arg_switches,name)
except AttributeError:
pass
# here is where we can pick and choose which to use
# default behavior is to choose the dream_command value over
# the arg value. For example, the --grid and --individual options are a little
# funny because of their push/pull relationship. This is how to handle it.
if name=='grid':
if cmd_switches.individual:
return False
else:
return value_cmd or value_arg
return value_cmd if value_cmd is not None else value_arg
def __setattr__(self,name,value):
if name.startswith('_'):
object.__setattr__(self,name,value)
else:
self._cmd_switches.__dict__[name] = value
def _merge_dict(self,dict1,dict2):
new_dict = {}
for k in set(list(dict1.keys())+list(dict2.keys())):
value1 = dict1.get(k,None)
value2 = dict2.get(k,None)
new_dict[k] = value2 if value2 is not None else value1
return new_dict
def _create_init_file(self,initfile:str):
with open(initfile, mode='w', encoding='utf-8') as f:
f.write('''# InvokeAI initialization file
# Put frequently-used startup commands here, one or more per line
# Examples:
# --web --host=0.0.0.0
# --steps 20
# -Ak_euler_a -C10.0
'''
)
def _create_arg_parser(self):
'''
This defines all the arguments used on the command line when you launch
the CLI or web backend.
'''
parser = PagingArgumentParser(
description=
"""
Generate images using Stable Diffusion.
Use --web to launch the web interface.
Use --from_file to load prompts from a file path or standard input ("-").
Otherwise you will be dropped into an interactive command prompt (type -h for help.)
Other command-line arguments are defaults that can usually be overridden
prompt the command prompt.
""",
fromfile_prefix_chars='@',
)
general_group = parser.add_argument_group('General')
model_group = parser.add_argument_group('Model selection')
file_group = parser.add_argument_group('Input/output')
web_server_group = parser.add_argument_group('Web server')
render_group = parser.add_argument_group('Rendering')
postprocessing_group = parser.add_argument_group('Postprocessing')
deprecated_group = parser.add_argument_group('Deprecated options')
deprecated_group.add_argument('--laion400m')
deprecated_group.add_argument('--weights') # deprecated
general_group.add_argument(
'--version','-V',
action='store_true',
help='Print InvokeAI version number'
)
model_group.add_argument(
'--root_dir',
default=None,
help='Path to directory containing "models", "outputs" and "configs". If not present will read from environment variable INVOKEAI_ROOT. Defaults to ~/invokeai.',
)
model_group.add_argument(
'--config',
'-c',
'-config',
dest='conf',
default='./configs/models.yaml',
help='Path to configuration file for alternate models.',
)
model_group.add_argument(
'--model',
help='Indicates which diffusion model to load (defaults to "default" stanza in configs/models.yaml)',
)
model_group.add_argument(
'--weight_dirs',
nargs='+',
type=str,
help='List of one or more directories that will be auto-scanned for new model weights to import',
)
model_group.add_argument(
'--png_compression','-z',
type=int,
default=6,
choices=range(0,9),
dest='png_compression',
help='level of PNG compression, from 0 (none) to 9 (maximum). Default is 6.'
)
model_group.add_argument(
'-F',
'--full_precision',
dest='full_precision',
action='store_true',
help='Deprecated way to set --precision=float32',
)
model_group.add_argument(
'--max_loaded_models',
dest='max_loaded_models',
type=int,
default=2,
help='Maximum number of models to keep in memory for fast switching, including the one in GPU',
)
model_group.add_argument(
'--free_gpu_mem',
dest='free_gpu_mem',
action='store_true',
help='Force free gpu memory before final decoding',
)
model_group.add_argument(
"--always_use_cpu",
dest="always_use_cpu",
action="store_true",
help="Force use of CPU even if GPU is available"
)
model_group.add_argument(
'--precision',
dest='precision',
type=str,
choices=PRECISION_CHOICES,
metavar='PRECISION',
help=f'Set model precision. Defaults to auto selected based on device. Options: {", ".join(PRECISION_CHOICES)}',
default='auto',
)
model_group.add_argument(
'--internet',
action=argparse.BooleanOptionalAction,
dest='internet_available',
default=True,
help='Indicate whether internet is available for just-in-time model downloading (default: probe automatically).',
)
model_group.add_argument(
'--nsfw_checker',
'--safety_checker',
action=argparse.BooleanOptionalAction,
dest='safety_checker',
default=False,
help='Check for and blur potentially NSFW images. Use --no-nsfw_checker to disable.',
)
model_group.add_argument(
'--autoconvert',
default=None,
type=str,
help='Check the indicated directory for .ckpt weights files at startup and import as optimized diffuser models',
)
model_group.add_argument(
'--patchmatch',
action=argparse.BooleanOptionalAction,
default=True,
help='Load the patchmatch extension for outpainting. Use --no-patchmatch to disable.',
)
file_group.add_argument(
'--from_file',
dest='infile',
type=str,
help='If specified, load prompts from this file',
)
file_group.add_argument(
'--outdir',
'-o',
type=str,
help='Directory to save generated images and a log of prompts and seeds. Default: outputs/img-samples',
default='outputs/img-samples',
)
file_group.add_argument(
'--prompt_as_dir',
'-p',
action='store_true',
help='Place images in subdirectories named after the prompt.',
)
render_group.add_argument(
'--fnformat',
default='{prefix}.{seed}.png',
type=str,
help='Overwrite the filename format. You can use any argument as wildcard enclosed in curly braces. Default is {prefix}.{seed}.png',
)
render_group.add_argument(
'-s',
'--steps',
type=int,
default=50,
help='Number of steps'
)
render_group.add_argument(
'-W',
'--width',
type=int,
help='Image width, multiple of 64',
)
render_group.add_argument(
'-H',
'--height',
type=int,
help='Image height, multiple of 64',
)
render_group.add_argument(
'-C',
'--cfg_scale',
default=7.5,
type=float,
help='Classifier free guidance (CFG) scale - higher numbers cause generator to "try" harder.',
)
render_group.add_argument(
'--sampler',
'-A',
'-m',
dest='sampler_name',
type=str,
choices=SAMPLER_CHOICES,
metavar='SAMPLER_NAME',
help=f'Set the default sampler. Supported samplers: {", ".join(SAMPLER_CHOICES)}',
default='k_lms',
)
render_group.add_argument(
'-f',
'--strength',
type=float,
help='img2img strength for noising/unnoising. 0.0 preserves image exactly, 1.0 replaces it completely',
)
render_group.add_argument(
'-T',
'-fit',
'--fit',
action=argparse.BooleanOptionalAction,
help='If specified, will resize the input image to fit within the dimensions of width x height (512x512 default)',
)
render_group.add_argument(
'--grid',
'-g',
action=argparse.BooleanOptionalAction,
help='generate a grid'
)
render_group.add_argument(
'--embedding_directory',
'--embedding_path',
dest='embedding_path',
default='embeddings',
type=str,
help='Path to a directory containing .bin and/or .pt files, or a single .bin/.pt file. You may use subdirectories. (default is ROOTDIR/embeddings)'
)
render_group.add_argument(
'--embeddings',
action=argparse.BooleanOptionalAction,
default=True,
help='Enable embedding directory (default). Use --no-embeddings to disable.',
)
render_group.add_argument(
'--enable_image_debugging',
action='store_true',
help='Generates debugging image to display'
)
render_group.add_argument(
'--karras_max',
type=int,
default=None,
help="control the point at which the K* samplers will shift from using the Karras noise schedule (good for low step counts) to the LatentDiffusion noise schedule (good for high step counts). Set to 0 to use LatentDiffusion for all step values, and to a high value (e.g. 1000) to use Karras for all step values. [29]."
)
# Restoration related args
postprocessing_group.add_argument(
'--no_restore',
dest='restore',
action='store_false',
help='Disable face restoration with GFPGAN or codeformer',
)
postprocessing_group.add_argument(
'--no_upscale',
dest='esrgan',
action='store_false',
help='Disable upscaling with ESRGAN',
)
postprocessing_group.add_argument(
'--esrgan_bg_tile',
type=int,
default=400,
help='Tile size for background sampler, 0 for no tile during testing. Default: 400.',
)
postprocessing_group.add_argument(
'--gfpgan_model_path',
type=str,
default='./models/gfpgan/GFPGANv1.4.pth',
help='Indicates the path to the GFPGAN model',
)
web_server_group.add_argument(
'--web',
dest='web',
action='store_true',
help='Start in web server mode.',
)
web_server_group.add_argument(
'--web_develop',
dest='web_develop',
action='store_true',
help='Start in web server development mode.',
)
web_server_group.add_argument(
"--web_verbose",
action="store_true",
help="Enables verbose logging",
)
web_server_group.add_argument(
"--cors",
nargs="*",
type=str,
help="Additional allowed origins, comma-separated",
)
web_server_group.add_argument(
'--host',
type=str,
default='127.0.0.1',
help='Web server: Host or IP to listen on. Set to 0.0.0.0 to accept traffic from other devices on your network.'
)
web_server_group.add_argument(
'--port',
type=int,
default='9090',
help='Web server: Port to listen on'
)
web_server_group.add_argument(
'--certfile',
type=str,
default=None,
help='Web server: Path to certificate file to use for SSL. Use together with --keyfile'
)
web_server_group.add_argument(
'--keyfile',
type=str,
default=None,
help='Web server: Path to private key file to use for SSL. Use together with --certfile'
)
web_server_group.add_argument(
'--gui',
dest='gui',
action='store_true',
help='Start InvokeAI GUI',
)
return parser
# This creates the parser that processes commands on the invoke> command line
def _create_dream_cmd_parser(self):
parser = PagingArgumentParser(
formatter_class=ArgFormatter,
description=
"""
*Image generation*
invoke> a fantastic alien landscape -W576 -H512 -s60 -n4
*postprocessing*
!fix applies upscaling/facefixing to a previously-generated image.
invoke> !fix 0000045.4829112.png -G1 -U4 -ft codeformer
*History manipulation*
!fetch retrieves the command used to generate an earlier image. Provide
a directory wildcard and the name of a file to write and all the commands
used to generate the images in the directory will be written to that file.
invoke> !fetch 0000015.8929913.png
invoke> a fantastic alien landscape -W 576 -H 512 -s 60 -A plms -C 7.5
invoke> !fetch /path/to/images/*.png prompts.txt
!replay /path/to/prompts.txt
Replays all the prompts contained in the file prompts.txt.
!history lists all the commands issued during the current session.
!NN retrieves the NNth command from the history
*Model manipulation*
!models -- list models in configs/models.yaml
!switch <model_name> -- switch to model named <model_name>
!import_model /path/to/weights/file.ckpt -- adds a .ckpt model to your config
!import_model http://path_to_model.ckpt -- downloads and adds a .ckpt model to your config
!import_model hakurei/waifu-diffusion -- downloads and adds a diffusers model to your config
!optimize_model <model_name> -- converts a .ckpt model to a diffusers model
!convert_model /path/to/weights/file.ckpt -- converts a .ckpt file path to a diffusers model
!edit_model <model_name> -- edit a model's description
!del_model <model_name> -- delete a model
"""
)
render_group = parser.add_argument_group('General rendering')
img2img_group = parser.add_argument_group('Image-to-image and inpainting')
inpainting_group = parser.add_argument_group('Inpainting')
outpainting_group = parser.add_argument_group('Outpainting and outcropping')
variation_group = parser.add_argument_group('Creating and combining variations')
postprocessing_group = parser.add_argument_group('Post-processing')
special_effects_group = parser.add_argument_group('Special effects')
deprecated_group = parser.add_argument_group('Deprecated options')
render_group.add_argument(
'--prompt',
default='',
help='prompt string',
)
render_group.add_argument(
'-s',
'--steps',
type=int,
help='Number of steps'
)
render_group.add_argument(
'-S',
'--seed',
type=int,
default=None,
help='Image seed; a +ve integer, or use -1 for the previous seed, -2 for the one before that, etc',
)
render_group.add_argument(
'-n',
'--iterations',
type=int,
default=1,
help='Number of samplings to perform (slower, but will provide seeds for individual images)',
)
render_group.add_argument(
'-W',
'--width',
type=int,
help='Image width, multiple of 64',
)
render_group.add_argument(
'-H',
'--height',
type=int,
help='Image height, multiple of 64',
)
render_group.add_argument(
'-C',
'--cfg_scale',
type=float,
help='Classifier free guidance (CFG) scale - higher numbers cause generator to "try" harder.',
)
render_group.add_argument(
'--threshold',
default=0.0,
type=float,
help='Latent threshold for classifier free guidance (CFG) - prevent generator from "trying" too hard. Use positive values, 0 disables.',
)
render_group.add_argument(
'--perlin',
default=0.0,
type=float,
help='Perlin noise scale (0.0 - 1.0) - add perlin noise to the initialization instead of the usual gaussian noise.',
)
render_group.add_argument(
'--fnformat',
default='{prefix}.{seed}.png',
type=str,
help='Overwrite the filename format. You can use any argument as wildcard enclosed in curly braces. Default is {prefix}.{seed}.png',
)
render_group.add_argument(
'--grid',
'-g',
action=argparse.BooleanOptionalAction,
help='generate a grid'
)
render_group.add_argument(
'-i',
'--individual',
action='store_true',
help='override command-line --grid setting and generate individual images'
)
render_group.add_argument(
'-x',
'--skip_normalize',
action='store_true',
help='Skip subprompt weight normalization',
)
render_group.add_argument(
'-A',
'-m',
'--sampler',
dest='sampler_name',
type=str,
choices=SAMPLER_CHOICES,
metavar='SAMPLER_NAME',
help=f'Switch to a different sampler. Supported samplers: {", ".join(SAMPLER_CHOICES)}',
)
render_group.add_argument(
'-t',
'--log_tokenization',
action='store_true',
help='shows how the prompt is split into tokens'
)
render_group.add_argument(
'--outdir',
'-o',
type=str,
help='Directory to save generated images and a log of prompts and seeds',
)
render_group.add_argument(
'--hires_fix',
action='store_true',
dest='hires_fix',
help='Create hires image using img2img to prevent duplicated objects'
)
render_group.add_argument(
'--save_intermediates',
type=int,
default=0,
dest='save_intermediates',
help='Save every nth intermediate image into an "intermediates" directory within the output directory'
)
render_group.add_argument(
'--png_compression','-z',
type=int,
default=6,
choices=range(0,10),
dest='png_compression',
help='level of PNG compression, from 0 (none) to 9 (maximum). [6]'
)
render_group.add_argument(
'--karras_max',
type=int,
default=None,
help="control the point at which the K* samplers will shift from using the Karras noise schedule (good for low step counts) to the LatentDiffusion noise schedule (good for high step counts). Set to 0 to use LatentDiffusion for all step values, and to a high value (e.g. 1000) to use Karras for all step values. [29]."
)
img2img_group.add_argument(
'-I',
'--init_img',
type=str,
help='Path to input image for img2img mode (supersedes width and height)',
)
img2img_group.add_argument(
'-tm',
'--text_mask',
nargs='+',
type=str,
help='Use the clipseg classifier to generate the mask area for inpainting. Provide a description of the area to mask ("a mug"), optionally followed by the confidence level threshold (0-1.0; defaults to 0.5).',
default=None,
)
img2img_group.add_argument(
'--init_color',
type=str,
help='Path to reference image for color correction (used for repeated img2img and inpainting)'
)
img2img_group.add_argument(
'-T',
'-fit',
'--fit',
action='store_true',
help='If specified, will resize the input image to fit within the dimensions of width x height (512x512 default)',
)
img2img_group.add_argument(
'-f',
'--strength',
type=float,
help='img2img strength for noising/unnoising. 0.0 preserves image exactly, 1.0 replaces it completely',
)
inpainting_group.add_argument(
'-M',
'--init_mask',
type=str,
help='Path to input mask for inpainting mode (supersedes width and height)',
)
inpainting_group.add_argument(
'--invert_mask',
action='store_true',
help='Invert the mask',
)
inpainting_group.add_argument(
'-r',
'--inpaint_replace',
type=float,
default=0.0,
help='when inpainting, adjust how aggressively to replace the part of the picture under the mask, from 0.0 (a gentle merge) to 1.0 (replace entirely)',
)
outpainting_group.add_argument(
'-c',
'--outcrop',
nargs='+',
type=str,
metavar=('direction','pixels'),
help='Outcrop the image with one or more direction/pixel pairs: e.g. -c top 64 bottom 128 left 64 right 64',
)
outpainting_group.add_argument(
'--force_outpaint',
action='store_true',
default=False,
help='Force outpainting if you have no inpainting mask to pass',
)
outpainting_group.add_argument(
'--seam_size',
type=int,
default=0,
help='When outpainting, size of the mask around the seam between original and outpainted image',
)
outpainting_group.add_argument(
'--seam_blur',
type=int,
default=0,
help='When outpainting, the amount to blur the seam inwards',
)
outpainting_group.add_argument(
'--seam_strength',
type=float,
default=0.7,
help='When outpainting, the img2img strength to use when filling the seam. Values around 0.7 work well',
)
outpainting_group.add_argument(
'--seam_steps',
type=int,
default=10,
help='When outpainting, the number of steps to use to fill the seam. Low values (~10) work well',
)
outpainting_group.add_argument(
'--tile_size',
type=int,
default=32,
help='When outpainting, the tile size to use for filling outpaint areas',
)
postprocessing_group.add_argument(
'--new_prompt',
type=str,
help='Change the text prompt applied during postprocessing (default, use original generation prompt)',
)
postprocessing_group.add_argument(
'-ft',
'--facetool',
type=str,
default='gfpgan',
help='Select the face restoration AI to use: gfpgan, codeformer',
)
postprocessing_group.add_argument(
'-G',
'--facetool_strength',
'--gfpgan_strength',
type=float,
help='The strength at which to apply the face restoration to the result.',
default=0.0,
)
postprocessing_group.add_argument(
'-cf',
'--codeformer_fidelity',
type=float,
help='Used along with CodeFormer. Takes values between 0 and 1. 0 produces high quality but low accuracy. 1 produces high accuracy but low quality.',
default=0.75
)
postprocessing_group.add_argument(
'-U',
'--upscale',
nargs='+',
type=float,
help='Scale factor (1, 2, 3, 4, etc..) for upscaling final output followed by upscaling strength (0-1.0). If strength not specified, defaults to 0.75',
default=None,
)
postprocessing_group.add_argument(
'--save_original',
'-save_orig',
action='store_true',
help='Save original. Use it when upscaling to save both versions.',
)
postprocessing_group.add_argument(
'--embiggen',
'-embiggen',
nargs='+',
type=float,
help='Arbitrary upscaling using img2img. Provide scale factor (0.75), optionally followed by strength (0.75) and tile overlap proportion (0.25).',
default=None,
)
postprocessing_group.add_argument(
'--embiggen_tiles',
'-embiggen_tiles',
nargs='+',
type=int,
help='For embiggen, provide list of tiles to process and replace onto the image e.g. `1 3 5`.',
default=None,
)
postprocessing_group.add_argument(
'--embiggen_strength',
'-embiggen_strength',
type=float,
help='The strength of the embiggen img2img step, defaults to 0.4',
default=None,
)
special_effects_group.add_argument(
'--seamless',
action='store_true',
help='Change the model to seamless tiling (circular) mode',
)
special_effects_group.add_argument(
'--seamless_axes',
default=['x', 'y'],
type=list[str],
help='Specify which axes to use circular convolution on.',
)
variation_group.add_argument(
'-v',
'--variation_amount',
default=0.0,
type=float,
help='If > 0, generates variations on the initial seed instead of random seeds per iteration. Must be between 0 and 1. Higher values will be more different.'
)
variation_group.add_argument(
'-V',
'--with_variations',
default=None,
type=str,
help='list of variations to apply, in the format `seed:weight,seed:weight,...'
)
render_group.add_argument(
'--use_mps_noise',
action='store_true',
dest='use_mps_noise',
help='Simulate noise on M1 systems to get the same results'
)
deprecated_group.add_argument(
'-D',
'--out_direction',
nargs='+',
type=str,
metavar=('direction', 'pixels'),
help='Older outcropping system. Direction to extend the given image (left|right|top|bottom). If a distance pixel value is not specified it defaults to half the image size'
)
return parser
def format_metadata(**kwargs):
print('format_metadata() is deprecated. Please use metadata_dumps()')
return metadata_dumps(kwargs)
def metadata_dumps(opt,
seeds=[],
model_hash=None,
postprocessing=None):
'''
Given an Args object, returns a dict containing the keys and
structure of the proposed stable diffusion metadata standard
https://github.com/lstein/stable-diffusion/discussions/392
This is intended to be turned into JSON and stored in the
"sd
'''
# top-level metadata minus `image` or `images`
metadata = {
'model' : 'stable diffusion',
'model_id' : opt.model,
'model_hash' : model_hash,
'app_id' : ldm.invoke.__app_id__,
'app_version' : ldm.invoke.__version__,
}
# # add some RFC266 fields that are generated internally, and not as
# # user args
image_dict = opt.to_dict(
postprocessing=postprocessing
)
# remove any image keys not mentioned in RFC #266
rfc266_img_fields = ['type','postprocessing','sampler','prompt','seed','variations','steps',
'cfg_scale','threshold','perlin','step_number','width','height','extra','strength','seamless'
'init_img','init_mask','facetool','facetool_strength','upscale']
rfc_dict ={}
for item in image_dict.items():
key,value = item
if key in rfc266_img_fields:
rfc_dict[key] = value
# semantic drift
rfc_dict['sampler'] = image_dict.get('sampler_name',None)
# display weighted subprompts (liable to change)
if opt.prompt:
subprompts = split_weighted_subprompts(opt.prompt)
subprompts = [{'prompt':x[0],'weight':x[1]} for x in subprompts]
rfc_dict['prompt'] = subprompts
# 'variations' should always exist and be an array, empty or consisting of {'seed': seed, 'weight': weight} pairs
rfc_dict['variations'] = [{'seed':x[0],'weight':x[1]} for x in opt.with_variations] if opt.with_variations else []
# if variations are present then we need to replace 'seed' with 'orig_seed'
if hasattr(opt,'first_seed'):
rfc_dict['seed'] = opt.first_seed
if opt.init_img:
rfc_dict['type'] = 'img2img'
rfc_dict['strength_steps'] = rfc_dict.pop('strength')
rfc_dict['orig_hash'] = calculate_init_img_hash(opt.init_img)
rfc_dict['inpaint_replace'] = opt.inpaint_replace
else:
rfc_dict['type'] = 'txt2img'
rfc_dict.pop('strength')
if len(seeds)==0 and opt.seed:
seeds=[opt.seed]
if opt.grid:
images = []
for seed in seeds:
rfc_dict['seed'] = seed
images.append(copy.copy(rfc_dict))
metadata['images'] = images
else:
# there should only ever be a single seed if we did not generate a grid
assert len(seeds) == 1, 'Expected a single seed'
rfc_dict['seed'] = seeds[0]
metadata['image'] = rfc_dict
return metadata
@functools.lru_cache(maxsize=50)
def args_from_png(png_file_path) -> list[Args]:
'''
Given the path to a PNG file created by invoke.py,
retrieves a list of Args objects containing the image
data.
'''
try:
meta = ldm.invoke.pngwriter.retrieve_metadata(png_file_path)
except AttributeError:
return [legacy_metadata_load({},png_file_path)]
try:
return metadata_loads(meta)
except:
return [legacy_metadata_load(meta,png_file_path)]
@functools.lru_cache(maxsize=50)
def metadata_from_png(png_file_path) -> Args:
'''
Given the path to a PNG file created by dream.py, retrieves
an Args object containing the image metadata. Note that this
returns a single Args object, not multiple.
'''
args_list = args_from_png(png_file_path)
return args_list[0] if len(args_list)>0 else Args() # empty args
def dream_cmd_from_png(png_file_path):
opt = metadata_from_png(png_file_path)
return opt.dream_prompt_str()
def metadata_loads(metadata) -> list:
'''
Takes the dictionary corresponding to RFC266 (https://github.com/lstein/stable-diffusion/issues/266)
and returns a series of opt objects for each of the images described in the dictionary. Note that this
returns a list, and not a single object. See metadata_from_png() for a more convenient function for
files that contain a single image.
'''
results = []
try:
if 'images' in metadata['sd-metadata']:
images = metadata['sd-metadata']['images']
else:
images = [metadata['sd-metadata']['image']]
for image in images:
# repack the prompt and variations
if 'prompt' in image:
image['prompt'] = repack_prompt(image['prompt'])
if 'variations' in image:
image['variations'] = ','.join([':'.join([str(x['seed']),str(x['weight'])]) for x in image['variations']])
# fix a bit of semantic drift here
image['sampler_name']=image.pop('sampler')
opt = Args()
opt._cmd_switches = Namespace(**image)
results.append(opt)
except Exception:
import sys, traceback
print('>> could not read metadata',file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
return results
def repack_prompt(prompt_list:list)->str:
# in the common case of no weighting syntax, just return the prompt as is
if len(prompt_list) > 1:
return ','.join([':'.join([x['prompt'], str(x['weight'])]) for x in prompt_list])
else:
return prompt_list[0]['prompt']
# image can either be a file path on disk or a base64-encoded
# representation of the file's contents
def calculate_init_img_hash(image_string):
prefix = 'data:image/png;base64,'
hash = None
if image_string.startswith(prefix):
imagebase64 = image_string[len(prefix):]
imagedata = base64.b64decode(imagebase64)
with open('outputs/test.png','wb') as file:
file.write(imagedata)
sha = hashlib.sha256()
sha.update(imagedata)
hash = sha.hexdigest()
else:
hash = sha256(image_string)
return hash
# Bah. This should be moved somewhere else...
def sha256(path):
sha = hashlib.sha256()
with open(path,'rb') as f:
while True:
data = f.read(65536)
if not data:
break
sha.update(data)
return sha.hexdigest()
def legacy_metadata_load(meta,pathname) -> Args:
opt = Args()
if 'Dream' in meta and len(meta['Dream']) > 0:
dream_prompt = meta['Dream']
opt.parse_cmd(dream_prompt)
else: # if nothing else, we can get the seed
match = re.search('\d+\.(\d+)',pathname)
if match:
seed = match.groups()[0]
opt.seed = seed
else:
opt.prompt = ''
opt.seed = 0
return opt