InvokeAI/ldm/invoke/model_manager.py
Lincoln Stein e561d19206 a few adjustments
- fix unused variables and f-strings found by pyflakes
- use global_converted_ckpts_dir() to find location of diffusers
- fixed bug in model_manager that was causing the description of converted
  models to read "Optimized version of {model_name}'
2023-02-12 17:20:13 -05:00

1176 lines
43 KiB
Python

"""
Manage a cache of Stable Diffusion model files for fast switching.
They are moved between GPU and CPU as necessary. If CPU memory falls
below a preset minimum, the least recently used model will be
cleared and loaded from disk when next needed.
"""
from __future__ import annotations
import contextlib
import gc
import hashlib
import io
import os
import sys
import textwrap
import time
import warnings
from pathlib import Path
from shutil import move, rmtree
from typing import Any, Optional, Union
import safetensors
import safetensors.torch
import torch
import transformers
from diffusers import AutoencoderKL
from diffusers import logging as dlogging
from diffusers.utils.logging import (get_verbosity, set_verbosity,
set_verbosity_error)
from huggingface_hub import scan_cache_dir
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
from picklescan.scanner import scan_file_path
from ldm.invoke.generator.diffusers_pipeline import \
StableDiffusionGeneratorPipeline
from ldm.invoke.globals import (Globals, global_autoscan_dir, global_cache_dir,
global_models_dir)
from ldm.util import (ask_user, download_with_progress_bar,
instantiate_from_config)
DEFAULT_MAX_MODELS = 2
VAE_TO_REPO_ID = { # hack, see note in convert_and_import()
"vae-ft-mse-840000-ema-pruned": "stabilityai/sd-vae-ft-mse",
}
class ModelManager(object):
def __init__(
self,
config: OmegaConf,
device_type: str = "cpu",
precision: str = "float16",
max_loaded_models=DEFAULT_MAX_MODELS,
):
"""
Initialize with the path to the models.yaml config file,
the torch device type, and precision. The optional
min_avail_mem argument specifies how much unused system
(CPU) memory to preserve. The cache of models in RAM will
grow until this value is approached. Default is 2G.
"""
# prevent nasty-looking CLIP log message
transformers.logging.set_verbosity_error()
self.config = config
self.precision = precision
self.device = torch.device(device_type)
self.max_loaded_models = max_loaded_models
self.models = {}
self.stack = [] # this is an LRU FIFO
self.current_model = None
def valid_model(self, model_name: str) -> bool:
"""
Given a model name, returns True if it is a valid
identifier.
"""
return model_name in self.config
def get_model(self, model_name: str):
"""
Given a model named identified in models.yaml, return
the model object. If in RAM will load into GPU VRAM.
If on disk, will load from there.
"""
if not self.valid_model(model_name):
print(
f'** "{model_name}" is not a known model name. Please check your models.yaml file'
)
return self.current_model
if self.current_model != model_name:
if model_name not in self.models: # make room for a new one
self._make_cache_room()
self.offload_model(self.current_model)
if model_name in self.models:
requested_model = self.models[model_name]["model"]
print(f">> Retrieving model {model_name} from system RAM cache")
self.models[model_name]["model"] = self._model_from_cpu(requested_model)
width = self.models[model_name]["width"]
height = self.models[model_name]["height"]
hash = self.models[model_name]["hash"]
else: # we're about to load a new model, so potentially offload the least recently used one
requested_model, width, height, hash = self._load_model(model_name)
self.models[model_name] = {
"model": requested_model,
"width": width,
"height": height,
"hash": hash,
}
self.current_model = model_name
self._push_newest_model(model_name)
return {
"model": requested_model,
"width": width,
"height": height,
"hash": hash,
}
def default_model(self) -> str | None:
"""
Returns the name of the default model, or None
if none is defined.
"""
for model_name in self.config:
if self.config[model_name].get("default"):
return model_name
def set_default_model(self, model_name: str) -> None:
"""
Set the default model. The change will not take
effect until you call model_manager.commit()
"""
assert model_name in self.model_names(), f"unknown model '{model_name}'"
config = self.config
for model in config:
config[model].pop("default", None)
config[model_name]["default"] = True
def model_info(self, model_name: str) -> dict:
"""
Given a model name returns the OmegaConf (dict-like) object describing it.
"""
if model_name not in self.config:
return None
return self.config[model_name]
def model_names(self) -> list[str]:
"""
Return a list consisting of all the names of models defined in models.yaml
"""
return list(self.config.keys())
def is_legacy(self, model_name: str) -> bool:
"""
Return true if this is a legacy (.ckpt) model
"""
# if we are converting legacy files automatically, then
# there are no legacy ckpts!
if Globals.ckpt_convert:
return False
info = self.model_info(model_name)
if "weights" in info and info["weights"].endswith((".ckpt", ".safetensors")):
return True
return False
def list_models(self) -> dict:
"""
Return a dict of models in the format:
{ model_name1: {'status': ('active'|'cached'|'not loaded'),
'description': description,
'format': ('ckpt'|'diffusers'|'vae'),
},
model_name2: { etc }
Please use model_manager.models() to get all the model names,
model_manager.model_info('model-name') to get the stanza for the model
named 'model-name', and model_manager.config to get the full OmegaConf
object derived from models.yaml
"""
models = {}
for name in sorted(self.config, key=str.casefold):
stanza = self.config[name]
# don't include VAEs in listing (legacy style)
if "config" in stanza and "/VAE/" in stanza["config"]:
continue
models[name] = dict()
format = stanza.get("format", "ckpt") # Determine Format
# Common Attribs
description = stanza.get("description", None)
if self.current_model == name:
status = "active"
elif name in self.models:
status = "cached"
else:
status = "not loaded"
models[name].update(
description=description,
format=format,
status=status,
)
# Checkpoint Config Parse
if format == "ckpt":
models[name].update(
config=str(stanza.get("config", None)),
weights=str(stanza.get("weights", None)),
vae=str(stanza.get("vae", None)),
width=str(stanza.get("width", 512)),
height=str(stanza.get("height", 512)),
)
# Diffusers Config Parse
if vae := stanza.get("vae", None):
if isinstance(vae, DictConfig):
vae = dict(
repo_id=str(vae.get("repo_id", None)),
path=str(vae.get("path", None)),
subfolder=str(vae.get("subfolder", None)),
)
if format == "diffusers":
models[name].update(
vae=vae,
repo_id=str(stanza.get("repo_id", None)),
path=str(stanza.get("path", None)),
)
return models
def print_models(self) -> None:
"""
Print a table of models, their descriptions, and load status
"""
models = self.list_models()
for name in models:
if models[name]["format"] == "vae":
continue
line = f'{name:25s} {models[name]["status"]:>10s} {models[name]["format"]:10s} {models[name]["description"]}'
if models[name]["status"] == "active":
line = f"\033[1m{line}\033[0m"
print(line)
def del_model(self, model_name: str, delete_files: bool = False) -> None:
"""
Delete the named model.
"""
omega = self.config
if model_name not in omega:
print(f"** Unknown model {model_name}")
return
# save these for use in deletion later
conf = omega[model_name]
repo_id = conf.get("repo_id", None)
path = self._abs_path(conf.get("path", None))
weights = self._abs_path(conf.get("weights", None))
del omega[model_name]
if model_name in self.stack:
self.stack.remove(model_name)
if delete_files:
if weights:
print(f"** deleting file {weights}")
Path(weights).unlink(missing_ok=True)
elif path:
print(f"** deleting directory {path}")
rmtree(path, ignore_errors=True)
elif repo_id:
print(f"** deleting the cached model directory for {repo_id}")
self._delete_model_from_cache(repo_id)
def add_model(
self, model_name: str, model_attributes: dict, clobber: bool = False
) -> None:
"""
Update the named model with a dictionary of attributes. Will fail with an
assertion error if the name already exists. Pass clobber=True to overwrite.
On a successful update, the config will be changed in memory and the
method will return True. Will fail with an assertion error if provided
attributes are incorrect or the model name is missing.
"""
omega = self.config
assert "format" in model_attributes, 'missing required field "format"'
if model_attributes["format"] == "diffusers":
assert (
"description" in model_attributes
), 'required field "description" is missing'
assert (
"path" in model_attributes or "repo_id" in model_attributes
), 'model must have either the "path" or "repo_id" fields defined'
else:
for field in ("description", "weights", "height", "width", "config"):
assert field in model_attributes, f"required field {field} is missing"
assert (
clobber or model_name not in omega
), f'attempt to overwrite existing model definition "{model_name}"'
omega[model_name] = model_attributes
if "weights" in omega[model_name]:
omega[model_name]["weights"].replace("\\", "/")
if clobber:
self._invalidate_cached_model(model_name)
def _load_model(self, model_name: str):
"""Load and initialize the model from configuration variables passed at object creation time"""
if model_name not in self.config:
print(
f'"{model_name}" is not a known model name. Please check your models.yaml file'
)
return
mconfig = self.config[model_name]
# for usage statistics
if self._has_cuda():
torch.cuda.reset_peak_memory_stats()
torch.cuda.empty_cache()
tic = time.time()
# this does the work
model_format = mconfig.get("format", "ckpt")
if model_format == "ckpt":
weights = mconfig.weights
print(f">> Loading {model_name} from {weights}")
model, width, height, model_hash = self._load_ckpt_model(
model_name, mconfig
)
elif model_format == "diffusers":
with warnings.catch_warnings():
warnings.simplefilter("ignore")
model, width, height, model_hash = self._load_diffusers_model(mconfig)
else:
raise NotImplementedError(
f"Unknown model format {model_name}: {model_format}"
)
# usage statistics
toc = time.time()
print(">> Model loaded in", "%4.2fs" % (toc - tic))
if self._has_cuda():
print(
">> Max VRAM used to load the model:",
"%4.2fG" % (torch.cuda.max_memory_allocated() / 1e9),
"\n>> Current VRAM usage:"
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9),
)
return model, width, height, model_hash
def _load_ckpt_model(self, model_name, mconfig):
config = mconfig.config
weights = mconfig.weights
vae = mconfig.get("vae")
width = mconfig.width
height = mconfig.height
if not os.path.isabs(config):
config = os.path.join(Globals.root, config)
if not os.path.isabs(weights):
weights = os.path.normpath(os.path.join(Globals.root, weights))
# if converting automatically to diffusers, then we do the conversion and return
# a diffusers pipeline
if Globals.ckpt_convert:
print(
f">> Converting legacy checkpoint {model_name} into a diffusers model..."
)
from ldm.invoke.ckpt_to_diffuser import \
load_pipeline_from_original_stable_diffusion_ckpt
if vae_config := self._choose_diffusers_vae(model_name):
vae = self._load_vae(vae_config)
pipeline = load_pipeline_from_original_stable_diffusion_ckpt(
checkpoint_path=weights,
original_config_file=config,
vae=vae,
return_generator_pipeline=True,
)
return (
pipeline.to(self.device).to(
torch.float16 if self.precision == "float16" else torch.float32
),
width,
height,
"NOHASH",
)
# scan model
self.scan_model(model_name, weights)
print(f">> Loading {model_name} from {weights}")
# for usage statistics
if self._has_cuda():
torch.cuda.reset_peak_memory_stats()
torch.cuda.empty_cache()
tic = time.time()
# this does the work
if not os.path.isabs(config):
config = os.path.join(Globals.root, config)
omega_config = OmegaConf.load(config)
with open(weights, "rb") as f:
weight_bytes = f.read()
model_hash = self._cached_sha256(weights, weight_bytes)
sd = None
if weights.endswith(".safetensors"):
sd = safetensors.torch.load(weight_bytes)
else:
sd = torch.load(io.BytesIO(weight_bytes), map_location="cpu")
del weight_bytes
# merged models from auto11 merge board are flat for some reason
if "state_dict" in sd:
sd = sd["state_dict"]
print(" | Forcing garbage collection prior to loading new model")
gc.collect()
model = instantiate_from_config(omega_config.model)
model.load_state_dict(sd, strict=False)
if self.precision == "float16":
print(" | Using faster float16 precision")
model = model.to(torch.float16)
else:
print(" | Using more accurate float32 precision")
# look and load a matching vae file. Code borrowed from AUTOMATIC1111 modules/sd_models.py
if vae:
if not os.path.isabs(vae):
vae = os.path.normpath(os.path.join(Globals.root, vae))
if os.path.exists(vae):
print(f" | Loading VAE weights from: {vae}")
vae_ckpt = None
vae_dict = None
if vae.endswith(".safetensors"):
vae_ckpt = safetensors.torch.load_file(vae)
vae_dict = {k: v for k, v in vae_ckpt.items() if k[0:4] != "loss"}
else:
vae_ckpt = torch.load(vae, map_location="cpu")
vae_dict = {
k: v
for k, v in vae_ckpt["state_dict"].items()
if k[0:4] != "loss"
}
model.first_stage_model.load_state_dict(vae_dict, strict=False)
else:
print(f" | VAE file {vae} not found. Skipping.")
model.to(self.device)
# model.to doesn't change the cond_stage_model.device used to move the tokenizer output, so set it here
model.cond_stage_model.device = self.device
model.eval()
for module in model.modules():
if isinstance(module, (torch.nn.Conv2d, torch.nn.ConvTranspose2d)):
module._orig_padding_mode = module.padding_mode
# usage statistics
toc = time.time()
print(">> Model loaded in", "%4.2fs" % (toc - tic))
if self._has_cuda():
print(
">> Max VRAM used to load the model:",
"%4.2fG" % (torch.cuda.max_memory_allocated() / 1e9),
"\n>> Current VRAM usage:"
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9),
)
return model, width, height, model_hash
def _load_diffusers_model(self, mconfig):
name_or_path = self.model_name_or_path(mconfig)
using_fp16 = self.precision == "float16"
print(f">> Loading diffusers model from {name_or_path}")
if using_fp16:
print(" | Using faster float16 precision")
else:
print(" | Using more accurate float32 precision")
# TODO: scan weights maybe?
pipeline_args: dict[str, Any] = dict(
safety_checker=None, local_files_only=not Globals.internet_available
)
if "vae" in mconfig and mconfig["vae"] is not None:
vae = self._load_vae(mconfig["vae"])
pipeline_args.update(vae=vae)
if not isinstance(name_or_path, Path):
pipeline_args.update(cache_dir=global_cache_dir("diffusers"))
if using_fp16:
pipeline_args.update(torch_dtype=torch.float16)
fp_args_list = [{"revision": "fp16"}, {}]
else:
fp_args_list = [{}]
verbosity = dlogging.get_verbosity()
dlogging.set_verbosity_error()
pipeline = None
for fp_args in fp_args_list:
try:
pipeline = StableDiffusionGeneratorPipeline.from_pretrained(
name_or_path,
**pipeline_args,
**fp_args,
)
except OSError as e:
if str(e).startswith("fp16 is not a valid"):
pass
else:
print(
f"** An unexpected error occurred while downloading the model: {e})"
)
if pipeline:
break
dlogging.set_verbosity(verbosity)
assert pipeline is not None, OSError(f'"{name_or_path}" could not be loaded')
pipeline.to(self.device)
model_hash = self._diffuser_sha256(name_or_path)
# square images???
width = pipeline.unet.config.sample_size * pipeline.vae_scale_factor
height = width
print(f" | Default image dimensions = {width} x {height}")
return pipeline, width, height, model_hash
def model_name_or_path(self, model_name: Union[str, DictConfig]) -> str | Path:
if isinstance(model_name, DictConfig) or isinstance(model_name, dict):
mconfig = model_name
elif model_name in self.config:
mconfig = self.config[model_name]
else:
raise ValueError(
f'"{model_name}" is not a known model name. Please check your models.yaml file'
)
if "path" in mconfig:
path = Path(mconfig["path"])
if not path.is_absolute():
path = Path(Globals.root, path).resolve()
return path
elif "repo_id" in mconfig:
return mconfig["repo_id"]
else:
raise ValueError("Model config must specify either repo_id or path.")
def offload_model(self, model_name: str) -> None:
"""
Offload the indicated model to CPU. Will call
_make_cache_room() to free space if needed.
"""
if model_name not in self.models:
return
print(f">> Offloading {model_name} to CPU")
model = self.models[model_name]["model"]
self.models[model_name]["model"] = self._model_to_cpu(model)
gc.collect()
if self._has_cuda():
torch.cuda.empty_cache()
def scan_model(self, model_name, checkpoint):
"""
Apply picklescanner to the indicated checkpoint and issue a warning
and option to exit if an infected file is identified.
"""
# scan model
print(f">> Scanning Model: {model_name}")
scan_result = scan_file_path(checkpoint)
if scan_result.infected_files != 0:
if scan_result.infected_files == 1:
print(f"\n### Issues Found In Model: {scan_result.issues_count}")
print(
"### WARNING: The model you are trying to load seems to be infected."
)
print("### For your safety, InvokeAI will not load this model.")
print("### Please use checkpoints from trusted sources.")
print("### Exiting InvokeAI")
sys.exit()
else:
print(
"\n### WARNING: InvokeAI was unable to scan the model you are using."
)
model_safe_check_fail = ask_user(
"Do you want to to continue loading the model?", ["y", "n"]
)
if model_safe_check_fail.lower() != "y":
print("### Exiting InvokeAI")
sys.exit()
else:
print(">> Model scanned ok!")
def import_diffuser_model(
self,
repo_or_path: Union[str, Path],
model_name: str = None,
description: str = None,
vae: dict = None,
commit_to_conf: Path = None,
) -> bool:
"""
Attempts to install the indicated diffuser model and returns True if successful.
"repo_or_path" can be either a repo-id or a path-like object corresponding to the
top of a downloaded diffusers directory.
You can optionally provide a model name and/or description. If not provided,
then these will be derived from the repo name. If you provide a commit_to_conf
path to the configuration file, then the new entry will be committed to the
models.yaml file.
"""
model_name = model_name or Path(repo_or_path).stem
description = description or f"imported diffusers model {model_name}"
new_config = dict(
description=description,
vae=vae,
format="diffusers",
)
if isinstance(repo_or_path, Path) and repo_or_path.exists():
new_config.update(path=str(repo_or_path))
else:
new_config.update(repo_id=repo_or_path)
self.add_model(model_name, new_config, True)
if commit_to_conf:
self.commit(commit_to_conf)
return True
def import_ckpt_model(
self,
weights: Union[str, Path],
config: Union[str, Path] = "configs/stable-diffusion/v1-inference.yaml",
vae: Union[str, Path] = None,
model_name: str = None,
model_description: str = None,
commit_to_conf: Path = None,
) -> bool:
"""
Attempts to install the indicated ckpt file and returns True if successful.
"weights" can be either a path-like object corresponding to a local .ckpt file
or a http/https URL pointing to a remote model.
"vae" is a Path or str object pointing to a ckpt or safetensors file to be used
as the VAE for this model.
"config" is the model config file to use with this ckpt file. It defaults to
v1-inference.yaml. If a URL is provided, the config will be downloaded.
You can optionally provide a model name and/or description. If not provided,
then these will be derived from the weight file name. If you provide a commit_to_conf
path to the configuration file, then the new entry will be committed to the
models.yaml file.
"""
weights_path = self._resolve_path(weights, "models/ldm/stable-diffusion-v1")
config_path = self._resolve_path(config, "configs/stable-diffusion")
if weights_path is None or not weights_path.exists():
return False
if config_path is None or not config_path.exists():
return False
model_name = model_name or Path(weights).stem
model_description = (
model_description or f"imported stable diffusion weights file {model_name}"
)
new_config = dict(
weights=str(weights_path),
config=str(config_path),
description=model_description,
format="ckpt",
width=512,
height=512,
)
if vae:
new_config["vae"] = vae
self.add_model(model_name, new_config, True)
if commit_to_conf:
self.commit(commit_to_conf)
return True
def autoconvert_weights(
self,
conf_path: Path,
weights_directory: Path = None,
dest_directory: Path = None,
):
"""
Scan the indicated directory for .ckpt files, convert into diffuser models,
and import.
"""
weights_directory = weights_directory or global_autoscan_dir()
dest_directory = dest_directory or Path(
global_models_dir(), Globals.converted_ckpts_dir
)
print(">> Checking for unconverted .ckpt files in {weights_directory}")
ckpt_files = dict()
for root, dirs, files in os.walk(weights_directory):
for f in files:
if not f.endswith(".ckpt"):
continue
basename = Path(f).stem
dest = Path(dest_directory, basename)
if not dest.exists():
ckpt_files[Path(root, f)] = dest
if len(ckpt_files) == 0:
return
print(
f">> New .ckpt file(s) found in {weights_directory}. Optimizing and importing..."
)
for ckpt in ckpt_files:
self.convert_and_import(ckpt, ckpt_files[ckpt])
self.commit(conf_path)
def convert_and_import(
self,
ckpt_path: Path,
diffusers_path: Path,
model_name=None,
model_description=None,
vae=None,
original_config_file: Path = None,
commit_to_conf: Path = None,
) -> dict:
"""
Convert a legacy ckpt weights file to diffuser model and import
into models.yaml.
"""
new_config = None
import transformers
from ldm.invoke.ckpt_to_diffuser import convert_ckpt_to_diffuser
if diffusers_path.exists():
print(
f"ERROR: The path {str(diffusers_path)} already exists. Please move or remove it and try again."
)
return
model_name = model_name or diffusers_path.name
model_description = model_description or f"Optimized version of {model_name}"
print(f">> Optimizing {model_name} (30-60s)")
try:
# By passing the specified VAE too the conversion function, the autoencoder
# will be built into the model rather than tacked on afterward via the config file
vae_model = self._load_vae(vae) if vae else None
convert_ckpt_to_diffuser(
ckpt_path,
diffusers_path,
extract_ema=True,
original_config_file=original_config_file,
vae=vae_model,
)
print(
f" | Success. Optimized model is now located at {str(diffusers_path)}"
)
print(f" | Writing new config file entry for {model_name}")
new_config = dict(
path=str(diffusers_path),
description=model_description,
format="diffusers",
)
if model_name in self.config:
self.del_model(model_name)
self.add_model(model_name, new_config, True)
if commit_to_conf:
self.commit(commit_to_conf)
print(">> Conversion succeeded")
except Exception as e:
print(f"** Conversion failed: {str(e)}")
print("** If you are trying to convert an inpainting or 2.X model, please indicate the correct config file (e.g. v1-inpainting-inference.yaml)")
return new_config
def search_models(self, search_folder):
print(f">> Finding Models In: {search_folder}")
models_folder_ckpt = Path(search_folder).glob("**/*.ckpt")
models_folder_safetensors = Path(search_folder).glob("**/*.safetensors")
ckpt_files = [x for x in models_folder_ckpt if x.is_file()]
safetensor_files = [x for x in models_folder_safetensors if x.is_file()]
files = ckpt_files + safetensor_files
found_models = []
for file in files:
location = str(file.resolve()).replace("\\", "/")
if 'model.safetensors' not in location and 'diffusion_pytorch_model.safetensors' not in location:
found_models.append(
{"name": file.stem, "location": location}
)
return search_folder, found_models
def _choose_diffusers_vae(
self, model_name: str, vae: str = None
) -> Union[dict, str]:
# In the event that the original entry is using a custom ckpt VAE, we try to
# map that VAE onto a diffuser VAE using a hard-coded dictionary.
# I would prefer to do this differently: We load the ckpt model into memory, swap the
# VAE in memory, and then pass that to convert_ckpt_to_diffuser() so that the swapped
# VAE is built into the model. However, when I tried this I got obscure key errors.
if vae:
return vae
if model_name in self.config and (
vae_ckpt_path := self.model_info(model_name).get("vae", None)
):
vae_basename = Path(vae_ckpt_path).stem
diffusers_vae = None
if diffusers_vae := VAE_TO_REPO_ID.get(vae_basename, None):
print(
f">> {vae_basename} VAE corresponds to known {diffusers_vae} diffusers version"
)
vae = {"repo_id": diffusers_vae}
else:
print(
f'** Custom VAE "{vae_basename}" found, but corresponding diffusers model unknown'
)
print(
'** Using "stabilityai/sd-vae-ft-mse"; If this isn\'t right, please edit the model config'
)
vae = {"repo_id": "stabilityai/sd-vae-ft-mse"}
return vae
def _make_cache_room(self) -> None:
num_loaded_models = len(self.models)
if num_loaded_models >= self.max_loaded_models:
least_recent_model = self._pop_oldest_model()
print(
f">> Cache limit (max={self.max_loaded_models}) reached. Purging {least_recent_model}"
)
if least_recent_model is not None:
del self.models[least_recent_model]
gc.collect()
def print_vram_usage(self) -> None:
if self._has_cuda:
print(
">> Current VRAM usage: ",
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9),
)
def commit(self, config_file_path: str) -> None:
"""
Write current configuration out to the indicated file.
"""
yaml_str = OmegaConf.to_yaml(self.config)
if not os.path.isabs(config_file_path):
config_file_path = os.path.normpath(
os.path.join(Globals.root, config_file_path)
)
tmpfile = os.path.join(os.path.dirname(config_file_path), "new_config.tmp")
with open(tmpfile, "w", encoding="utf-8") as outfile:
outfile.write(self.preamble())
outfile.write(yaml_str)
os.replace(tmpfile, config_file_path)
def preamble(self) -> str:
"""
Returns the preamble for the config file.
"""
return textwrap.dedent(
"""\
# This file describes the alternative machine learning models
# available to InvokeAI script.
#
# To add a new model, follow the examples below. Each
# model requires a model config file, a weights file,
# and the width and height of the images it
# was trained on.
"""
)
@classmethod
def migrate_models(cls):
"""
Migrate the ~/invokeai/models directory from the legacy format used through 2.2.5
to the 2.3.0 "diffusers" version. This should be a one-time operation, called at
script startup time.
"""
# Three transformer models to check: bert, clip and safety checker
legacy_locations = [
Path(
"CompVis/stable-diffusion-safety-checker/models--CompVis--stable-diffusion-safety-checker"
),
Path("bert-base-uncased/models--bert-base-uncased"),
Path(
"openai/clip-vit-large-patch14/models--openai--clip-vit-large-patch14"
),
]
models_dir = Path(Globals.root, "models")
legacy_layout = False
for model in legacy_locations:
legacy_layout = legacy_layout or Path(models_dir, model).exists()
if not legacy_layout:
return
print(
"** Legacy version <= 2.2.5 model directory layout detected. Reorganizing."
)
print("** This is a quick one-time operation.")
# transformer files get moved into the hub directory
if cls._is_huggingface_hub_directory_present():
hub = global_cache_dir("hub")
else:
hub = models_dir / "hub"
os.makedirs(hub, exist_ok=True)
for model in legacy_locations:
source = models_dir / model
dest = hub / model.stem
print(f"** {source} => {dest}")
if source.exists():
if dest.exists():
rmtree(source)
else:
move(source, dest)
# anything else gets moved into the diffusers directory
if cls._is_huggingface_hub_directory_present():
diffusers = global_cache_dir("diffusers")
else:
diffusers = models_dir / "diffusers"
os.makedirs(diffusers, exist_ok=True)
for root, dirs, _ in os.walk(models_dir, topdown=False):
for dir in dirs:
full_path = Path(root, dir)
if full_path.is_relative_to(hub) or full_path.is_relative_to(diffusers):
continue
if Path(dir).match("models--*--*"):
dest = diffusers / dir
print(f"** {full_path} => {dest}")
if dest.exists():
rmtree(full_path)
else:
move(full_path, dest)
# now clean up by removing any empty directories
empty = [
root
for root, dirs, files, in os.walk(models_dir)
if not len(dirs) and not len(files)
]
for d in empty:
os.rmdir(d)
print("** Migration is done. Continuing...")
def _resolve_path(
self, source: Union[str, Path], dest_directory: str
) -> Optional[Path]:
resolved_path = None
if str(source).startswith(("http:", "https:", "ftp:")):
basename = os.path.basename(source)
if not os.path.isabs(dest_directory):
dest_directory = os.path.join(Globals.root, dest_directory)
dest = os.path.join(dest_directory, basename)
if download_with_progress_bar(str(source), Path(dest)):
resolved_path = Path(dest)
else:
if not os.path.isabs(source):
source = os.path.join(Globals.root, source)
resolved_path = Path(source)
return resolved_path
def _invalidate_cached_model(self, model_name: str) -> None:
self.offload_model(model_name)
if model_name in self.stack:
self.stack.remove(model_name)
self.models.pop(model_name, None)
def _model_to_cpu(self, model):
if self.device == "cpu":
return model
# diffusers really really doesn't like us moving a float16 model onto CPU
verbosity = get_verbosity()
set_verbosity_error()
model.cond_stage_model.device = "cpu"
model.to("cpu")
set_verbosity(verbosity)
for submodel in ("first_stage_model", "cond_stage_model", "model"):
try:
getattr(model, submodel).to("cpu")
except AttributeError:
pass
return model
def _model_from_cpu(self, model):
if self.device == "cpu":
return model
model.to(self.device)
model.cond_stage_model.device = self.device
for submodel in ("first_stage_model", "cond_stage_model", "model"):
try:
getattr(model, submodel).to(self.device)
except AttributeError:
pass
return model
def _pop_oldest_model(self):
"""
Remove the first element of the FIFO, which ought
to be the least recently accessed model. Do not
pop the last one, because it is in active use!
"""
return self.stack.pop(0)
def _push_newest_model(self, model_name: str) -> None:
"""
Maintain a simple FIFO. First element is always the
least recent, and last element is always the most recent.
"""
with contextlib.suppress(ValueError):
self.stack.remove(model_name)
self.stack.append(model_name)
def _has_cuda(self) -> bool:
return self.device.type == "cuda"
def _diffuser_sha256(
self, name_or_path: Union[str, Path], chunksize=4096
) -> Union[str, bytes]:
path = None
if isinstance(name_or_path, Path):
path = name_or_path
else:
owner, repo = name_or_path.split("/")
path = Path(global_cache_dir("diffusers") / f"models--{owner}--{repo}")
if not path.exists():
return None
hashpath = path / "checksum.sha256"
if hashpath.exists() and path.stat().st_mtime <= hashpath.stat().st_mtime:
with open(hashpath) as f:
hash = f.read()
return hash
print(" | Calculating sha256 hash of model files")
tic = time.time()
sha = hashlib.sha256()
count = 0
for root, dirs, files in os.walk(path, followlinks=False):
for name in files:
count += 1
with open(os.path.join(root, name), "rb") as f:
while chunk := f.read(chunksize):
sha.update(chunk)
hash = sha.hexdigest()
toc = time.time()
print(f" | sha256 = {hash} ({count} files hashed in", "%4.2fs)" % (toc - tic))
with open(hashpath, "w") as f:
f.write(hash)
return hash
def _cached_sha256(self, path, data) -> Union[str, bytes]:
dirname = os.path.dirname(path)
basename = os.path.basename(path)
base, _ = os.path.splitext(basename)
hashpath = os.path.join(dirname, base + ".sha256")
if os.path.exists(hashpath) and os.path.getmtime(path) <= os.path.getmtime(
hashpath
):
with open(hashpath) as f:
hash = f.read()
return hash
print(" | Calculating sha256 hash of weights file")
tic = time.time()
sha = hashlib.sha256()
sha.update(data)
hash = sha.hexdigest()
toc = time.time()
print(f">> sha256 = {hash}", "(%4.2fs)" % (toc - tic))
with open(hashpath, "w") as f:
f.write(hash)
return hash
def _load_vae(self, vae_config) -> AutoencoderKL:
vae_args = {}
name_or_path = self.model_name_or_path(vae_config)
using_fp16 = self.precision == "float16"
vae_args.update(
cache_dir=global_cache_dir("diffusers"),
local_files_only=not Globals.internet_available,
)
print(f" | Loading diffusers VAE from {name_or_path}")
if using_fp16:
vae_args.update(torch_dtype=torch.float16)
fp_args_list = [{"revision": "fp16"}, {}]
else:
print(" | Using more accurate float32 precision")
fp_args_list = [{}]
vae = None
deferred_error = None
# A VAE may be in a subfolder of a model's repository.
if "subfolder" in vae_config:
vae_args["subfolder"] = vae_config["subfolder"]
for fp_args in fp_args_list:
# At some point we might need to be able to use different classes here? But for now I think
# all Stable Diffusion VAE are AutoencoderKL.
try:
vae = AutoencoderKL.from_pretrained(name_or_path, **vae_args, **fp_args)
except OSError as e:
if str(e).startswith("fp16 is not a valid"):
pass
else:
deferred_error = e
if vae:
break
if not vae and deferred_error:
print(f"** Could not load VAE {name_or_path}: {str(deferred_error)}")
return vae
@staticmethod
def _delete_model_from_cache(repo_id):
cache_info = scan_cache_dir(global_cache_dir("diffusers"))
# I'm sure there is a way to do this with comprehensions
# but the code quickly became incomprehensible!
hashes_to_delete = set()
for repo in cache_info.repos:
if repo.repo_id == repo_id:
for revision in repo.revisions:
hashes_to_delete.add(revision.commit_hash)
strategy = cache_info.delete_revisions(*hashes_to_delete)
print(
f"** deletion of this model is expected to free {strategy.expected_freed_size_str}"
)
strategy.execute()
@staticmethod
def _abs_path(path: Union(str, Path)) -> Path:
if path is None or Path(path).is_absolute():
return path
return Path(Globals.root, path).resolve()
@staticmethod
def _is_huggingface_hub_directory_present() -> bool:
return (
os.getenv("HF_HOME") is not None or os.getenv("XDG_CACHE_HOME") is not None
)