InvokeAI/ldm/invoke/config/invokeai_configure.py
2023-02-19 13:12:05 -05:00

735 lines
24 KiB
Python
Executable File

#!/usr/bin/env python
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
# Before running stable-diffusion on an internet-isolated machine,
# run this script from one with internet connectivity. The
# two machines must share a common .cache directory.
#
# Coauthor: Kevin Turner http://github.com/keturn
#
print("Loading Python libraries...\n")
import argparse
import curses
import npyscreen
import io
import os
import re
import shutil
import sys
import traceback
import warnings
from pathlib import Path
from urllib import request
import transformers
from argparse import Namespace
from huggingface_hub import HfFolder
from huggingface_hub import login as hf_hub_login
from omegaconf import OmegaConf
from tqdm import tqdm
from transformers import (
AutoProcessor,
CLIPSegForImageSegmentation,
CLIPTextModel,
CLIPTokenizer,
)
import invokeai.configs as configs
from ..args import Args, PRECISION_CHOICES
from .model_install_backend import download_from_hf
from .model_install import select_and_download_models
from .widgets import IntTitleSlider
from ..globals import Globals, global_config_dir
from ..readline import generic_completer
warnings.filterwarnings("ignore")
transformers.logging.set_verbosity_error()
# --------------------------globals-----------------------
Model_dir = "models"
Weights_dir = "ldm/stable-diffusion-v1/"
# the initial "configs" dir is now bundled in the `invokeai.configs` package
Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml"
Default_config_file = Path(global_config_dir()) / "models.yaml"
SD_Configs = Path(global_config_dir()) / "stable-diffusion"
Datasets = OmegaConf.load(Dataset_path)
completer = generic_completer(["yes", "no"])
INIT_FILE_PREAMBLE = """# InvokeAI initialization file
# This is the InvokeAI initialization file, which contains command-line default values.
# Feel free to edit. If anything goes wrong, you can re-initialize this file by deleting
# or renaming it and then running invokeai-configure again.
# Place frequently-used startup commands here, one or more per line.
# Examples:
# --outdir=D:\data\images
# --no-nsfw_checker
# --web --host=0.0.0.0
# --steps=20
# -Ak_euler_a -C10.0
"""
# --------------------------------------------
def postscript(errors: None):
if not any(errors):
message = f"""
** Model Installation Successful **
You're all set!
---
If you installed manually from source or with 'pip install': activate the virtual environment
then run one of the following commands to start InvokeAI.
Web UI:
invokeai --web # (connect to http://localhost:9090)
invokeai --web --host 0.0.0.0 # (connect to http://your-lan-ip:9090 from another computer on the local network)
Command-line interface:
invokeai
---
If you installed using an installation script, run:
{Globals.root}/invoke.{"bat" if sys.platform == "win32" else "sh"}
Add the '--help' argument to see all of the command-line switches available for use.
Have fun!
"""
else:
message = "\n** There were errors during installation. It is possible some of the models were not fully downloaded.\n"
for err in errors:
message += f"\t - {err}\n"
message += "Please check the logs above and correct any issues."
print(message)
# ---------------------------------------------
def yes_or_no(prompt: str, default_yes=True):
completer.set_options(["yes", "no"])
completer.complete_extensions(None) # turn off path-completion mode
default = "y" if default_yes else "n"
response = input(f"{prompt} [{default}] ") or default
if default_yes:
return response[0] not in ("n", "N")
else:
return response[0] in ("y", "Y")
# ---------------------------------------------
def HfLogin(access_token) -> str:
"""
Helper for logging in to Huggingface
The stdout capture is needed to hide the irrelevant "git credential helper" warning
"""
capture = io.StringIO()
sys.stdout = capture
try:
hf_hub_login(token=access_token, add_to_git_credential=False)
sys.stdout = sys.__stdout__
except Exception as exc:
sys.stdout = sys.__stdout__
print(exc)
raise exc
# -------------------------------------
class ProgressBar:
def __init__(self, model_name="file"):
self.pbar = None
self.name = model_name
def __call__(self, block_num, block_size, total_size):
if not self.pbar:
self.pbar = tqdm(
desc=self.name,
initial=0,
unit="iB",
unit_scale=True,
unit_divisor=1000,
total=total_size,
)
self.pbar.update(block_size)
# ---------------------------------------------
def download_with_progress_bar(model_url: str, model_dest: str, label: str = "the"):
try:
print(f"Installing {label} model file {model_url}...", end="", file=sys.stderr)
if not os.path.exists(model_dest):
os.makedirs(os.path.dirname(model_dest), exist_ok=True)
print("", file=sys.stderr)
request.urlretrieve(
model_url, model_dest, ProgressBar(os.path.basename(model_dest))
)
print("...downloaded successfully", file=sys.stderr)
else:
print("...exists", file=sys.stderr)
except Exception:
print("...download failed")
print(f"Error downloading {label} model")
print(traceback.format_exc())
# ---------------------------------------------
# this will preload the Bert tokenizer fles
def download_bert():
print(
"Installing bert tokenizer (ignore deprecation errors)...",
end="",
file=sys.stderr,
)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
from transformers import BertTokenizerFast
download_from_hf(BertTokenizerFast, "bert-base-uncased")
print("...success", file=sys.stderr)
# ---------------------------------------------
def download_clip():
print("Installing CLIP model (ignore deprecation errors)...", file=sys.stderr)
version = "openai/clip-vit-large-patch14"
print("Tokenizer...", file=sys.stderr, end="")
download_from_hf(CLIPTokenizer, version)
print("Text model...", file=sys.stderr, end="")
download_from_hf(CLIPTextModel, version)
print("...success", file=sys.stderr)
# ---------------------------------------------
def download_realesrgan():
print("Installing models from RealESRGAN...", file=sys.stderr)
model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth"
wdn_model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth"
model_dest = os.path.join(
Globals.root, "models/realesrgan/realesr-general-x4v3.pth"
)
wdn_model_dest = os.path.join(
Globals.root, "models/realesrgan/realesr-general-wdn-x4v3.pth"
)
download_with_progress_bar(model_url, model_dest, "RealESRGAN")
download_with_progress_bar(wdn_model_url, wdn_model_dest, "RealESRGANwdn")
def download_gfpgan():
print("Installing GFPGAN models...", file=sys.stderr)
for model in (
[
"https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth",
"./models/gfpgan/GFPGANv1.4.pth",
],
[
"https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth",
"./models/gfpgan/weights/detection_Resnet50_Final.pth",
],
[
"https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth",
"./models/gfpgan/weights/parsing_parsenet.pth",
],
):
model_url, model_dest = model[0], os.path.join(Globals.root, model[1])
download_with_progress_bar(model_url, model_dest, "GFPGAN weights")
# ---------------------------------------------
def download_codeformer():
print("Installing CodeFormer model file...", file=sys.stderr)
model_url = (
"https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth"
)
model_dest = os.path.join(Globals.root, "models/codeformer/codeformer.pth")
download_with_progress_bar(model_url, model_dest, "CodeFormer")
# ---------------------------------------------
def download_clipseg():
print("Installing clipseg model for text-based masking...", end="", file=sys.stderr)
CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined"
try:
download_from_hf(AutoProcessor, CLIPSEG_MODEL)
download_from_hf(CLIPSegForImageSegmentation, CLIPSEG_MODEL)
except Exception:
print("Error installing clipseg model:")
print(traceback.format_exc())
print("...success", file=sys.stderr)
# -------------------------------------
def download_safety_checker():
print("Installing model for NSFW content detection...", file=sys.stderr)
try:
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from transformers import AutoFeatureExtractor
except ModuleNotFoundError:
print("Error installing NSFW checker model:")
print(traceback.format_exc())
return
safety_model_id = "CompVis/stable-diffusion-safety-checker"
print("AutoFeatureExtractor...", end="", file=sys.stderr)
download_from_hf(AutoFeatureExtractor, safety_model_id)
print("StableDiffusionSafetyChecker...", end="", file=sys.stderr)
download_from_hf(StableDiffusionSafetyChecker, safety_model_id)
print("...success", file=sys.stderr)
# -------------------------------------
def get_root(root: str = None) -> str:
if root:
return root
elif os.environ.get("INVOKEAI_ROOT"):
return os.environ.get("INVOKEAI_ROOT")
else:
return Globals.root
class editOptsForm(npyscreen.FormMultiPage):
def create(self):
old_opts = self.parentApp.old_opts
first_time = not (Globals.root / Globals.initfile).exists()
access_token = HfFolder.get_token()
window_height, window_width = curses.initscr().getmaxyx()
for i in [
'Configure startup settings. You can come back and change these later.',
'Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields.',
'Use cursor arrows to make a checkbox selection, and space to toggle.',
]:
self.add_widget_intelligent(
npyscreen.FixedText,
value=i,
editable=False,
color='CONTROL',
)
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="== BASIC OPTIONS ==",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True
)
self.nextrely -= 1
self.add_widget_intelligent(
npyscreen.FixedText,
value='Select an output directory for images:',
editable=False,
color='CONTROL',
)
self.outdir = self.add_widget_intelligent(
npyscreen.TitleFilename,
name='(<tab> autocompletes, ctrl-N advances):',
value=old_opts.outdir or str(default_output_dir()),
select_dir=True,
must_exist=False,
use_two_lines=False,
labelColor='GOOD',
begin_entry_at=40,
scroll_exit=True,
)
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.FixedText,
value='Activate the NSFW checker to blur images showing potential sexual imagery:',
editable=False,
color='CONTROL'
)
self.safety_checker = self.add_widget_intelligent(
npyscreen.Checkbox,
name='NSFW checker',
value=old_opts.safety_checker,
relx = 5,
scroll_exit=True,
)
self.nextrely += 1
for i in [
'If you have an account at HuggingFace you may paste your access token here',
'to allow InvokeAI to download styles & subjects from the "Concept Library".',
'See https://huggingface.co/settings/tokens',
]:
self.add_widget_intelligent(
npyscreen.FixedText,
value=i,
editable=False,
color='CONTROL',
)
self.hf_token = self.add_widget_intelligent(
npyscreen.TitlePassword,
name='Access Token (use shift-ctrl-V to paste):',
value=access_token,
begin_entry_at=42,
use_two_lines=False,
scroll_exit=True
)
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="== ADVANCED OPTIONS ==",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True
)
self.nextrely -= 1
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="GPU Management",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True
)
self.nextrely -= 1
self.free_gpu_mem = self.add_widget_intelligent(
npyscreen.Checkbox,
name='Free GPU memory after each generation',
value=old_opts.free_gpu_mem,
relx=5,
scroll_exit=True
)
self.xformers = self.add_widget_intelligent(
npyscreen.Checkbox,
name='Enable xformers support if available',
value=old_opts.xformers,
relx=5,
scroll_exit=True
)
self.always_use_cpu = self.add_widget_intelligent(
npyscreen.Checkbox,
name='Force CPU to be used on GPU systems',
value=old_opts.always_use_cpu,
relx=5,
scroll_exit=True
)
self.precision = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name='Precision',
values=PRECISION_CHOICES,
value=PRECISION_CHOICES.index(old_opts.precision),
begin_entry_at=3,
max_height=len(PRECISION_CHOICES)+1,
scroll_exit=True,
)
self.max_loaded_models = self.add_widget_intelligent(
IntTitleSlider,
name="Number of models to cache in CPU memory (each will use 2-4 GB!)",
value=old_opts.max_loaded_models,
out_of=10,
lowest=1,
begin_entry_at=4,
scroll_exit=True
)
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.FixedText,
value='Directory containing embedding/textual inversion files:',
editable=False,
color='CONTROL',
)
self.embedding_path = self.add_widget_intelligent(
npyscreen.TitleFilename,
name='(<tab> autocompletes, ctrl-N advances):',
value=str(default_embedding_dir()),
select_dir=True,
must_exist=False,
use_two_lines=False,
labelColor='GOOD',
begin_entry_at=40,
scroll_exit=True,
)
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="== LICENSE ==",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True
)
self.nextrely -= 1
for i in [
'BY DOWNLOADING THE STABLE DIFFUSION WEIGHT FILES, YOU AGREE TO HAVE READ',
'AND ACCEPTED THE CREATIVEML RESPONSIBLE AI LICENSE LOCATED AT',
'https://huggingface.co/spaces/CompVis/stable-diffusion-license'
]:
self.add_widget_intelligent(
npyscreen.FixedText,
value=i,
editable=False,
color='CONTROL',
)
self.license_acceptance = self.add_widget_intelligent(
npyscreen.Checkbox,
name='I accept the CreativeML Responsible AI License',
value=not first_time,
relx = 2,
scroll_exit=True
)
self.nextrely += 1
self.ok_button = self.add_widget_intelligent(
npyscreen.ButtonPress,
name='DONE',
relx= (window_width-len('DONE'))//2,
rely= -3,
when_pressed_function=self.on_ok
)
def on_ok(self):
options = self.marshall_arguments()
if self.validate_field_values(options):
self.parentApp.setNextForm(None)
self.editing = False
else:
self.editing = True
def validate_field_values(self, opt: Namespace) -> bool:
bad_fields = []
if not opt.license_acceptance:
bad_fields.append(
'Please accept the license terms before proceeding to model downloads'
)
if not Path(opt.outdir).parent.exists():
bad_fields.append(
f'The output directory does not seem to be valid. Please check that {str(Path(opt.outdir).parent)} is an existing directory.'
)
if not Path(opt.embedding_path).parent.exists():
bad_fields.append(
f'The embedding directory does not seem to be valid. Please check that {str(Path(opt.embedding_path).parent)} is an existing directory.'
)
if len(bad_fields) > 0:
message = "The following problems were detected and must be corrected:\n"
for problem in bad_fields:
message += f"* {problem}\n"
npyscreen.notify_confirm(message)
return False
else:
return True
def marshall_arguments(self):
new_opts = Namespace()
for attr in ['outdir','safety_checker','free_gpu_mem','max_loaded_models',
'xformers','always_use_cpu','embedding_path']:
setattr(new_opts, attr, getattr(self, attr).value)
new_opts.hf_token = self.hf_token.value
new_opts.license_acceptance = self.license_acceptance.value
new_opts.precision = PRECISION_CHOICES[self.precision.value[0]]
return new_opts
class EditOptApplication(npyscreen.NPSAppManaged):
def __init__(self, old_opts=argparse.Namespace):
super().__init__()
self.old_opts=old_opts
def onStart(self):
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
self.main = self.addForm(
"MAIN",
editOptsForm,
name='InvokeAI Startup Options',
)
def new_opts(self):
return self.main.marshall_arguments()
def edit_opts(old_opts: argparse.Namespace)->argparse.Namespace:
editApp = EditOptApplication(old_opts)
editApp.run()
return editApp.new_opts()
# -------------------------------------
def initialize_rootdir(root: str, yes_to_all: bool = False):
print("** INITIALIZING INVOKEAI RUNTIME DIRECTORY **")
for name in (
"models",
"configs",
"embeddings",
"text-inversion-data",
"text-inversion-training-data",
):
os.makedirs(os.path.join(root, name), exist_ok=True)
configs_src = Path(configs.__path__[0])
configs_dest = Path(root) / "configs"
if not os.path.samefile(configs_src, configs_dest):
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
# -------------------------------------
def do_edit_opt_form(old_opts: argparse.Namespace)->argparse.Namespace:
editApp = EditOptApplication(old_opts)
editApp.run()
return editApp.new_opts()
# -------------------------------------
def edit_options(init_file: Path):
# get current settings from initfile
opt = Args().parse_args()
new_opt = do_edit_opt_form(opt)
write_opts(new_opt, init_file)
# -------------------------------------
def write_opts(opts: Namespace, init_file: Path):
'''
Update the invokeai.init file with values from opts Namespace
'''
# touch file if it doesn't exist
if not init_file.exists():
with open(init_file,'w') as f:
f.write(INIT_FILE_PREAMBLE)
# We want to write in the changed arguments without clobbering
# any other initialization values the user has entered. There is
# no good way to do this because of the one-way nature of
# argparse: i.e. --outdir could be --outdir, --out, or -o
# initfile needs to be replaced with a fully structured format
# such as yaml; this is a hack that will work much of the time
args_to_skip = re.compile('^--?(o|out|no-xformer|xformer|free|no-nsfw|nsfw|prec|max_load|embed)')
new_file = f'{init_file}.new'
try:
lines = open(init_file,'r').readlines()
with open(new_file,'w') as out_file:
for line in lines:
if not args_to_skip.match(line):
out_file.write(line)
out_file.write(f'''
--outdir={opts.outdir}
--embedding_path={opts.embedding_path}
--precision={opts.precision}
--max_loaded_models={int(opts.max_loaded_models)}
--{'no-' if not opts.safety_checker else ''}nsfw_checker
--{'no-' if not opts.xformers else ''}xformers
{'--free_gpu_mem' if opts.free_gpu_mem else ''}
{'--always_use_cpu' if opts.always_use_cpu else ''}
''')
except OSError as e:
print(f'** An error occurred while writing the init file: {str(e)}')
os.replace(new_file, init_file)
if opts.hf_token:
HfLogin(opts.hf_token)
# -------------------------------------
def default_output_dir()->Path:
return Globals.root / 'outputs'
# -------------------------------------
def default_embedding_dir()->Path:
return Globals.root / 'embeddings'
# -------------------------------------
def write_default_options(initfile: Path):
opt = Namespace(
outdir=str(default_output_dir()),
embedding_path=str(default_embedding_dir()),
nsfw_checker=True,
max_loaded_models=2,
free_gpu_mem=True
)
write_opts(opt, initfile)
# -------------------------------------
def main():
parser = argparse.ArgumentParser(description="InvokeAI model downloader")
parser.add_argument(
"--skip-sd-weights",
dest="skip_sd_weights",
action=argparse.BooleanOptionalAction,
default=False,
help="skip downloading the large Stable Diffusion weight files",
)
parser.add_argument(
"--full-precision",
dest="full_precision",
action=argparse.BooleanOptionalAction,
type=bool,
default=False,
help="use 32-bit weights instead of faster 16-bit weights",
)
parser.add_argument(
"--yes",
"-y",
dest="yes_to_all",
action="store_true",
help='answer "yes" to all prompts',
)
parser.add_argument(
"--default_only",
action="store_true",
help="when --yes specified, only install the default model",
)
parser.add_argument(
"--config_file",
"-c",
dest="config_file",
type=str,
default=None,
help="path to configuration file to create",
)
parser.add_argument(
"--root_dir",
dest="root",
type=str,
default=None,
help="path to root of install directory",
)
opt = parser.parse_args()
# setting a global here
Globals.root = os.path.expanduser(get_root(opt.root) or "")
errors = set()
try:
# We check for to see if the runtime directory is correctly initialized.
init_file = Path(Globals.root, Globals.initfile)
if not init_file.exists():
initialize_rootdir(Globals.root, opt.yes_to_all)
if opt.yes_to_all:
write_default_options(init_file)
else:
edit_options(init_file)
print("\n** DOWNLOADING SUPPORT MODELS **")
download_bert()
download_clip()
download_realesrgan()
download_gfpgan()
download_codeformer()
download_clipseg()
download_safety_checker()
if opt.skip_sd_weights:
print("** SKIPPING DIFFUSION WEIGHTS DOWNLOAD PER USER REQUEST **")
else:
print("** DOWNLOADING DIFFUSION WEIGHTS **")
errors.add(select_and_download_models(opt))
postscript(errors=errors)
except KeyboardInterrupt:
print("\nGoodbye! Come back soon.")
except Exception as e:
print(f'\nA problem occurred during initialization.\nThe error was: "{str(e)}"')
print(traceback.format_exc())
# -------------------------------------
if __name__ == "__main__":
main()