mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
149 lines
5.4 KiB
Python
149 lines
5.4 KiB
Python
# Copyright (c) 2024 The InvokeAI Development Team
|
|
"""Various utility functions needed by the loader and caching system."""
|
|
|
|
import json
|
|
import logging
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
import torch
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
|
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
|
from transformers import CLIPTokenizer
|
|
|
|
from invokeai.backend.image_util.grounding_dino.grounding_dino_pipeline import GroundingDinoPipeline
|
|
from invokeai.backend.image_util.segment_anything.segment_anything_pipeline import SegmentAnythingPipeline
|
|
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
|
|
from invokeai.backend.lora import LoRAModelRaw
|
|
from invokeai.backend.model_manager.config import AnyModel
|
|
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
|
|
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
|
|
from invokeai.backend.textual_inversion import TextualInversionModelRaw
|
|
|
|
|
|
def calc_model_size_by_data(logger: logging.Logger, model: AnyModel) -> int:
|
|
"""Get size of a model in memory in bytes."""
|
|
# TODO(ryand): We should create a CacheableModel interface for all models, and move the size calculations down to
|
|
# the models themselves.
|
|
if isinstance(model, DiffusionPipeline):
|
|
return _calc_pipeline_by_data(model)
|
|
elif isinstance(model, torch.nn.Module):
|
|
return calc_module_size(model)
|
|
elif isinstance(model, IAIOnnxRuntimeModel):
|
|
return _calc_onnx_model_by_data(model)
|
|
elif isinstance(model, SchedulerMixin):
|
|
return 0
|
|
elif isinstance(model, CLIPTokenizer):
|
|
# TODO(ryand): Accurately calculate the tokenizer's size. It's small enough that it shouldn't matter for now.
|
|
return 0
|
|
elif isinstance(
|
|
model,
|
|
(
|
|
TextualInversionModelRaw,
|
|
IPAdapter,
|
|
LoRAModelRaw,
|
|
SpandrelImageToImageModel,
|
|
GroundingDinoPipeline,
|
|
SegmentAnythingPipeline,
|
|
),
|
|
):
|
|
return model.calc_size()
|
|
else:
|
|
# TODO(ryand): Promote this from a log to an exception once we are confident that we are handling all of the
|
|
# supported model types.
|
|
logger.warning(
|
|
f"Failed to calculate model size for unexpected model type: {type(model)}. The model will be treated as "
|
|
"having size 0."
|
|
)
|
|
return 0
|
|
|
|
|
|
def _calc_pipeline_by_data(pipeline: DiffusionPipeline) -> int:
|
|
res = 0
|
|
assert hasattr(pipeline, "components")
|
|
for submodel_key in pipeline.components.keys():
|
|
submodel = getattr(pipeline, submodel_key)
|
|
if submodel is not None and isinstance(submodel, torch.nn.Module):
|
|
res += calc_module_size(submodel)
|
|
return res
|
|
|
|
|
|
def calc_module_size(model: torch.nn.Module) -> int:
|
|
"""Calculate the size (in bytes) of a torch.nn.Module."""
|
|
mem_params = sum([param.nelement() * param.element_size() for param in model.parameters()])
|
|
mem_bufs = sum([buf.nelement() * buf.element_size() for buf in model.buffers()])
|
|
mem: int = mem_params + mem_bufs # in bytes
|
|
return mem
|
|
|
|
|
|
def _calc_onnx_model_by_data(model: IAIOnnxRuntimeModel) -> int:
|
|
tensor_size = model.tensors.size() * 2 # The session doubles this
|
|
mem = tensor_size # in bytes
|
|
return mem
|
|
|
|
|
|
def calc_model_size_by_fs(model_path: Path, subfolder: Optional[str] = None, variant: Optional[str] = None) -> int:
|
|
"""Estimate the size of a model on disk in bytes."""
|
|
if model_path.is_file():
|
|
return model_path.stat().st_size
|
|
|
|
if subfolder is not None:
|
|
model_path = model_path / subfolder
|
|
|
|
# this can happen when, for example, the safety checker is not downloaded.
|
|
if not model_path.exists():
|
|
return 0
|
|
|
|
all_files = [f for f in model_path.iterdir() if (model_path / f).is_file()]
|
|
|
|
fp16_files = {f for f in all_files if ".fp16." in f.name or ".fp16-" in f.name}
|
|
bit8_files = {f for f in all_files if ".8bit." in f.name or ".8bit-" in f.name}
|
|
other_files = set(all_files) - fp16_files - bit8_files
|
|
|
|
if not variant: # ModelRepoVariant.DEFAULT evaluates to empty string for compatability with HF
|
|
files = other_files
|
|
elif variant == "fp16":
|
|
files = fp16_files
|
|
elif variant == "8bit":
|
|
files = bit8_files
|
|
else:
|
|
raise NotImplementedError(f"Unknown variant: {variant}")
|
|
|
|
# try read from index if exists
|
|
index_postfix = ".index.json"
|
|
if variant is not None:
|
|
index_postfix = f".index.{variant}.json"
|
|
|
|
for file in files:
|
|
if not file.name.endswith(index_postfix):
|
|
continue
|
|
try:
|
|
with open(model_path / file, "r") as f:
|
|
index_data = json.loads(f.read())
|
|
return int(index_data["metadata"]["total_size"])
|
|
except Exception:
|
|
pass
|
|
|
|
# calculate files size if there is no index file
|
|
formats = [
|
|
(".safetensors",), # safetensors
|
|
(".bin",), # torch
|
|
(".onnx", ".pb"), # onnx
|
|
(".msgpack",), # flax
|
|
(".ckpt",), # tf
|
|
(".h5",), # tf2
|
|
]
|
|
|
|
for file_format in formats:
|
|
model_files = [f for f in files if f.suffix in file_format]
|
|
if len(model_files) == 0:
|
|
continue
|
|
|
|
model_size = 0
|
|
for model_file in model_files:
|
|
file_stats = (model_path / model_file).stat()
|
|
model_size += file_stats.st_size
|
|
return model_size
|
|
|
|
return 0 # scheduler/feature_extractor/tokenizer - models without loading to gpu
|