mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
8600aad12b
1. add a /sync route for synchronizing the in-memory model lists to models.yaml, the models directory, and the autoimport directories. 2. add optional destination_directories to convert_model and merge_model operations. 3. add /ckpt_confs route for retrieving known legacy checkpoint configuration files. 4. add /search route for finding all models in a directory located in the server filesystem
287 lines
13 KiB
Python
287 lines
13 KiB
Python
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654), 2023 Kent Keirsey (https://github.com/hipsterusername), 2023 Lincoln D. Stein
|
|
|
|
|
|
import pathlib
|
|
from typing import Literal, List, Optional, Union
|
|
|
|
from fastapi import Body, Path, Query, Response
|
|
from fastapi.routing import APIRouter
|
|
from pydantic import BaseModel, parse_obj_as
|
|
from starlette.exceptions import HTTPException
|
|
|
|
from invokeai.backend import BaseModelType, ModelType
|
|
from invokeai.backend.model_management.models import (
|
|
OPENAPI_MODEL_CONFIGS,
|
|
SchedulerPredictionType,
|
|
)
|
|
from invokeai.backend.model_management import MergeInterpolationMethod
|
|
from ..dependencies import ApiDependencies
|
|
|
|
models_router = APIRouter(prefix="/v1/models", tags=["models"])
|
|
|
|
UpdateModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
|
|
ImportModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
|
|
ConvertModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
|
|
MergeModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
|
|
|
|
class ModelsList(BaseModel):
|
|
models: list[Union[tuple(OPENAPI_MODEL_CONFIGS)]]
|
|
|
|
@models_router.get(
|
|
"/",
|
|
operation_id="list_models",
|
|
responses={200: {"model": ModelsList }},
|
|
)
|
|
async def list_models(
|
|
base_model: Optional[BaseModelType] = Query(default=None, description="Base model"),
|
|
model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"),
|
|
) -> ModelsList:
|
|
"""Gets a list of models"""
|
|
models_raw = ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type)
|
|
models = parse_obj_as(ModelsList, { "models": models_raw })
|
|
return models
|
|
|
|
@models_router.patch(
|
|
"/{base_model}/{model_type}/{model_name}",
|
|
operation_id="update_model",
|
|
responses={200: {"description" : "The model was updated successfully"},
|
|
404: {"description" : "The model could not be found"},
|
|
400: {"description" : "Bad request"}
|
|
},
|
|
status_code = 200,
|
|
response_model = UpdateModelResponse,
|
|
)
|
|
async def update_model(
|
|
base_model: BaseModelType = Path(description="Base model"),
|
|
model_type: ModelType = Path(description="The type of model"),
|
|
model_name: str = Path(description="model name"),
|
|
info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"),
|
|
) -> UpdateModelResponse:
|
|
""" Add Model """
|
|
try:
|
|
ApiDependencies.invoker.services.model_manager.update_model(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
model_attributes=info.dict()
|
|
)
|
|
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
)
|
|
model_response = parse_obj_as(UpdateModelResponse, model_raw)
|
|
except KeyError as e:
|
|
raise HTTPException(status_code=404, detail=str(e))
|
|
except ValueError as e:
|
|
raise HTTPException(status_code=400, detail=str(e))
|
|
|
|
return model_response
|
|
|
|
@models_router.post(
|
|
"/",
|
|
operation_id="import_model",
|
|
responses= {
|
|
201: {"description" : "The model imported successfully"},
|
|
404: {"description" : "The model could not be found"},
|
|
424: {"description" : "The model appeared to import successfully, but could not be found in the model manager"},
|
|
409: {"description" : "There is already a model corresponding to this path or repo_id"},
|
|
},
|
|
status_code=201,
|
|
response_model=ImportModelResponse
|
|
)
|
|
async def import_model(
|
|
location: str = Body(description="A model path, repo_id or URL to import"),
|
|
prediction_type: Optional[Literal['v_prediction','epsilon','sample']] = \
|
|
Body(description='Prediction type for SDv2 checkpoint files', default="v_prediction"),
|
|
) -> ImportModelResponse:
|
|
""" Add a model using its local path, repo_id, or remote URL """
|
|
|
|
items_to_import = {location}
|
|
prediction_types = { x.value: x for x in SchedulerPredictionType }
|
|
logger = ApiDependencies.invoker.services.logger
|
|
|
|
try:
|
|
installed_models = ApiDependencies.invoker.services.model_manager.heuristic_import(
|
|
items_to_import = items_to_import,
|
|
prediction_type_helper = lambda x: prediction_types.get(prediction_type)
|
|
)
|
|
info = installed_models.get(location)
|
|
|
|
if not info:
|
|
logger.error("Import failed")
|
|
raise HTTPException(status_code=424)
|
|
|
|
logger.info(f'Successfully imported {location}, got {info}')
|
|
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
|
|
model_name=info.name,
|
|
base_model=info.base_model,
|
|
model_type=info.model_type
|
|
)
|
|
return parse_obj_as(ImportModelResponse, model_raw)
|
|
|
|
except KeyError as e:
|
|
logger.error(str(e))
|
|
raise HTTPException(status_code=404, detail=str(e))
|
|
except ValueError as e:
|
|
logger.error(str(e))
|
|
raise HTTPException(status_code=409, detail=str(e))
|
|
|
|
|
|
@models_router.delete(
|
|
"/{base_model}/{model_type}/{model_name}",
|
|
operation_id="del_model",
|
|
responses={
|
|
204: { "description": "Model deleted successfully" },
|
|
404: { "description": "Model not found" }
|
|
},
|
|
status_code = 204,
|
|
response_model = None,
|
|
)
|
|
async def delete_model(
|
|
base_model: BaseModelType = Path(description="Base model"),
|
|
model_type: ModelType = Path(description="The type of model"),
|
|
model_name: str = Path(description="model name"),
|
|
) -> Response:
|
|
"""Delete Model"""
|
|
logger = ApiDependencies.invoker.services.logger
|
|
|
|
try:
|
|
ApiDependencies.invoker.services.model_manager.del_model(model_name,
|
|
base_model = base_model,
|
|
model_type = model_type
|
|
)
|
|
logger.info(f"Deleted model: {model_name}")
|
|
return Response(status_code=204)
|
|
except KeyError:
|
|
logger.error(f"Model not found: {model_name}")
|
|
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
|
|
|
|
@models_router.put(
|
|
"/convert/{base_model}/{model_type}/{model_name}",
|
|
operation_id="convert_model",
|
|
responses={
|
|
200: { "description": "Model converted successfully" },
|
|
400: {"description" : "Bad request" },
|
|
404: { "description": "Model not found" },
|
|
},
|
|
status_code = 200,
|
|
response_model = ConvertModelResponse,
|
|
)
|
|
async def convert_model(
|
|
base_model: BaseModelType = Path(description="Base model"),
|
|
model_type: ModelType = Path(description="The type of model"),
|
|
model_name: str = Path(description="model name"),
|
|
convert_dest_directory: Optional[str] = Query(default=None, description="Save the converted model to the designated directory"),
|
|
) -> ConvertModelResponse:
|
|
"""Convert a checkpoint model into a diffusers model, optionally saving to the indicated destination directory, or `models` if none."""
|
|
logger = ApiDependencies.invoker.services.logger
|
|
try:
|
|
logger.info(f"Converting model: {model_name}")
|
|
dest = pathlib.Path(convert_dest_directory) if convert_dest_directory else None
|
|
ApiDependencies.invoker.services.model_manager.convert_model(model_name,
|
|
base_model = base_model,
|
|
model_type = model_type,
|
|
convert_dest_directory = dest,
|
|
)
|
|
model_raw = ApiDependencies.invoker.services.model_manager.list_model(model_name,
|
|
base_model = base_model,
|
|
model_type = model_type)
|
|
response = parse_obj_as(ConvertModelResponse, model_raw)
|
|
except KeyError:
|
|
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
|
|
except ValueError as e:
|
|
raise HTTPException(status_code=400, detail=str(e))
|
|
return response
|
|
|
|
@models_router.get(
|
|
"/search",
|
|
operation_id="search_for_models",
|
|
responses={
|
|
200: { "description": "Directory searched successfully" },
|
|
404: { "description": "Invalid directory path" },
|
|
},
|
|
status_code = 200,
|
|
response_model = List[pathlib.Path]
|
|
)
|
|
async def search_for_models(
|
|
search_path: pathlib.Path = Query(description="Directory path to search for models")
|
|
)->List[pathlib.Path]:
|
|
if not search_path.is_dir():
|
|
raise HTTPException(status_code=404, detail=f"The search path '{search_path}' does not exist or is not directory")
|
|
return ApiDependencies.invoker.services.model_manager.search_for_models([search_path])
|
|
|
|
@models_router.get(
|
|
"/ckpt_confs",
|
|
operation_id="list_ckpt_configs",
|
|
responses={
|
|
200: { "description" : "paths retrieved successfully" },
|
|
},
|
|
status_code = 200,
|
|
response_model = List[pathlib.Path]
|
|
)
|
|
async def list_ckpt_configs(
|
|
)->List[pathlib.Path]:
|
|
"""Return a list of the legacy checkpoint configuration files stored in `ROOT/configs/stable-diffusion`, relative to ROOT."""
|
|
return ApiDependencies.invoker.services.model_manager.list_checkpoint_configs()
|
|
|
|
|
|
@models_router.get(
|
|
"/sync",
|
|
operation_id="sync_to_config",
|
|
responses={
|
|
201: { "description": "synchronization successful" },
|
|
},
|
|
status_code = 201,
|
|
response_model = None
|
|
)
|
|
async def sync_to_config(
|
|
)->None:
|
|
"""Call after making changes to models.yaml, autoimport directories or models directory to synchronize
|
|
in-memory data structures with disk data structures."""
|
|
return ApiDependencies.invoker.services.model_manager.sync_to_config()
|
|
|
|
@models_router.put(
|
|
"/merge/{base_model}",
|
|
operation_id="merge_models",
|
|
responses={
|
|
200: { "description": "Model converted successfully" },
|
|
400: { "description": "Incompatible models" },
|
|
404: { "description": "One or more models not found" },
|
|
},
|
|
status_code = 200,
|
|
response_model = MergeModelResponse,
|
|
)
|
|
async def merge_models(
|
|
base_model: BaseModelType = Path(description="Base model"),
|
|
model_names: List[str] = Body(description="model name", min_items=2, max_items=3),
|
|
merged_model_name: Optional[str] = Body(description="Name of destination model"),
|
|
alpha: Optional[float] = Body(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5),
|
|
interp: Optional[MergeInterpolationMethod] = Body(description="Interpolation method"),
|
|
force: Optional[bool] = Body(description="Force merging of models created with different versions of diffusers", default=False),
|
|
merge_dest_directory: Optional[str] = Body(description="Save the merged model to the designated directory (with 'merged_model_name' appended)", default=None)
|
|
) -> MergeModelResponse:
|
|
"""Convert a checkpoint model into a diffusers model"""
|
|
logger = ApiDependencies.invoker.services.logger
|
|
try:
|
|
logger.info(f"Merging models: {model_names} into {merge_dest_directory or '<MODELS>'}/{merged_model_name}")
|
|
dest = pathlib.Path(merge_dest_directory) if merge_dest_directory else None
|
|
result = ApiDependencies.invoker.services.model_manager.merge_models(model_names,
|
|
base_model,
|
|
merged_model_name=merged_model_name or "+".join(model_names),
|
|
alpha=alpha,
|
|
interp=interp,
|
|
force=force,
|
|
merge_dest_directory = dest
|
|
)
|
|
model_raw = ApiDependencies.invoker.services.model_manager.list_model(result.name,
|
|
base_model = base_model,
|
|
model_type = ModelType.Main,
|
|
)
|
|
response = parse_obj_as(ConvertModelResponse, model_raw)
|
|
except KeyError:
|
|
raise HTTPException(status_code=404, detail=f"One or more of the models '{model_names}' not found")
|
|
except ValueError as e:
|
|
raise HTTPException(status_code=400, detail=str(e))
|
|
return response
|