mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
893 lines
31 KiB
Python
Executable File
893 lines
31 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
|
|
# Before running stable-diffusion on an internet-isolated machine,
|
|
# run this script from one with internet connectivity. The
|
|
# two machines must share a common .cache directory.
|
|
#
|
|
# Coauthor: Kevin Turner http://github.com/keturn
|
|
#
|
|
import sys
|
|
print("Loading Python libraries...\n",file=sys.stderr)
|
|
|
|
import argparse
|
|
import io
|
|
import os
|
|
import shutil
|
|
import textwrap
|
|
import traceback
|
|
import warnings
|
|
import yaml
|
|
from argparse import Namespace
|
|
from pathlib import Path
|
|
from shutil import get_terminal_size
|
|
from typing import get_type_hints
|
|
from urllib import request
|
|
|
|
import npyscreen
|
|
import transformers
|
|
from diffusers import AutoencoderKL
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
|
from huggingface_hub import HfFolder
|
|
from huggingface_hub import login as hf_hub_login
|
|
from omegaconf import OmegaConf
|
|
from tqdm import tqdm
|
|
from transformers import (
|
|
AutoProcessor,
|
|
CLIPSegForImageSegmentation,
|
|
CLIPTextModel,
|
|
CLIPTokenizer,
|
|
AutoFeatureExtractor,
|
|
BertTokenizerFast,
|
|
)
|
|
import invokeai.configs as configs
|
|
|
|
from invokeai.app.services.config import (
|
|
InvokeAIAppConfig,
|
|
)
|
|
from invokeai.backend.util.logging import InvokeAILogger
|
|
from invokeai.frontend.install.model_install import addModelsForm, process_and_execute
|
|
from invokeai.frontend.install.widgets import (
|
|
CenteredButtonPress,
|
|
IntTitleSlider,
|
|
set_min_terminal_size,
|
|
CyclingForm,
|
|
MIN_COLS,
|
|
MIN_LINES,
|
|
)
|
|
from invokeai.backend.install.legacy_arg_parsing import legacy_parser
|
|
from invokeai.backend.install.model_install_backend import (
|
|
hf_download_from_pretrained,
|
|
InstallSelections,
|
|
ModelInstall,
|
|
)
|
|
from invokeai.backend.model_management.model_probe import (
|
|
ModelType, BaseModelType
|
|
)
|
|
|
|
warnings.filterwarnings("ignore")
|
|
transformers.logging.set_verbosity_error()
|
|
|
|
|
|
# --------------------------globals-----------------------
|
|
|
|
config = InvokeAIAppConfig.get_config()
|
|
|
|
Model_dir = "models"
|
|
Weights_dir = "ldm/stable-diffusion-v1/"
|
|
|
|
Default_config_file = config.model_conf_path
|
|
SD_Configs = config.legacy_conf_path
|
|
|
|
PRECISION_CHOICES = ['auto','float16','float32','autocast']
|
|
|
|
INIT_FILE_PREAMBLE = """# InvokeAI initialization file
|
|
# This is the InvokeAI initialization file, which contains command-line default values.
|
|
# Feel free to edit. If anything goes wrong, you can re-initialize this file by deleting
|
|
# or renaming it and then running invokeai-configure again.
|
|
"""
|
|
|
|
logger=InvokeAILogger.getLogger()
|
|
|
|
# --------------------------------------------
|
|
def postscript(errors: None):
|
|
if not any(errors):
|
|
message = f"""
|
|
** INVOKEAI INSTALLATION SUCCESSFUL **
|
|
If you installed manually from source or with 'pip install': activate the virtual environment
|
|
then run one of the following commands to start InvokeAI.
|
|
|
|
Web UI:
|
|
invokeai-web
|
|
|
|
Command-line client:
|
|
invokeai
|
|
|
|
If you installed using an installation script, run:
|
|
{config.root_path}/invoke.{"bat" if sys.platform == "win32" else "sh"}
|
|
|
|
Add the '--help' argument to see all of the command-line switches available for use.
|
|
"""
|
|
|
|
else:
|
|
message = "\n** There were errors during installation. It is possible some of the models were not fully downloaded.\n"
|
|
for err in errors:
|
|
message += f"\t - {err}\n"
|
|
message += "Please check the logs above and correct any issues."
|
|
|
|
print(message)
|
|
|
|
|
|
# ---------------------------------------------
|
|
def yes_or_no(prompt: str, default_yes=True):
|
|
default = "y" if default_yes else "n"
|
|
response = input(f"{prompt} [{default}] ") or default
|
|
if default_yes:
|
|
return response[0] not in ("n", "N")
|
|
else:
|
|
return response[0] in ("y", "Y")
|
|
|
|
|
|
# ---------------------------------------------
|
|
def HfLogin(access_token) -> str:
|
|
"""
|
|
Helper for logging in to Huggingface
|
|
The stdout capture is needed to hide the irrelevant "git credential helper" warning
|
|
"""
|
|
|
|
capture = io.StringIO()
|
|
sys.stdout = capture
|
|
try:
|
|
hf_hub_login(token=access_token, add_to_git_credential=False)
|
|
sys.stdout = sys.__stdout__
|
|
except Exception as exc:
|
|
sys.stdout = sys.__stdout__
|
|
print(exc)
|
|
raise exc
|
|
|
|
|
|
# -------------------------------------
|
|
class ProgressBar:
|
|
def __init__(self, model_name="file"):
|
|
self.pbar = None
|
|
self.name = model_name
|
|
|
|
def __call__(self, block_num, block_size, total_size):
|
|
if not self.pbar:
|
|
self.pbar = tqdm(
|
|
desc=self.name,
|
|
initial=0,
|
|
unit="iB",
|
|
unit_scale=True,
|
|
unit_divisor=1000,
|
|
total=total_size,
|
|
)
|
|
self.pbar.update(block_size)
|
|
|
|
|
|
# ---------------------------------------------
|
|
def download_with_progress_bar(model_url: str, model_dest: str, label: str = "the"):
|
|
try:
|
|
logger.info(f"Installing {label} model file {model_url}...")
|
|
if not os.path.exists(model_dest):
|
|
os.makedirs(os.path.dirname(model_dest), exist_ok=True)
|
|
request.urlretrieve(
|
|
model_url, model_dest, ProgressBar(os.path.basename(model_dest))
|
|
)
|
|
logger.info("...downloaded successfully")
|
|
else:
|
|
logger.info("...exists")
|
|
except Exception:
|
|
logger.info("...download failed")
|
|
logger.info(f"Error downloading {label} model")
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
|
|
|
|
def download_conversion_models():
|
|
target_dir = config.root_path / 'models/core/convert'
|
|
kwargs = dict() # for future use
|
|
try:
|
|
logger.info('Downloading core tokenizers and text encoders')
|
|
|
|
# bert
|
|
with warnings.catch_warnings():
|
|
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
|
bert = BertTokenizerFast.from_pretrained("bert-base-uncased", **kwargs)
|
|
bert.save_pretrained(target_dir / 'bert-base-uncased', safe_serialization=True)
|
|
|
|
# sd-1
|
|
repo_id = 'openai/clip-vit-large-patch14'
|
|
hf_download_from_pretrained(CLIPTokenizer, repo_id, target_dir / 'clip-vit-large-patch14')
|
|
hf_download_from_pretrained(CLIPTextModel, repo_id, target_dir / 'clip-vit-large-patch14')
|
|
|
|
# sd-2
|
|
repo_id = "stabilityai/stable-diffusion-2"
|
|
pipeline = CLIPTokenizer.from_pretrained(repo_id, subfolder="tokenizer", **kwargs)
|
|
pipeline.save_pretrained(target_dir / 'stable-diffusion-2-clip' / 'tokenizer', safe_serialization=True)
|
|
|
|
pipeline = CLIPTextModel.from_pretrained(repo_id, subfolder="text_encoder", **kwargs)
|
|
pipeline.save_pretrained(target_dir / 'stable-diffusion-2-clip' / 'text_encoder', safe_serialization=True)
|
|
|
|
# VAE
|
|
logger.info('Downloading stable diffusion VAE')
|
|
vae = AutoencoderKL.from_pretrained('stabilityai/sd-vae-ft-mse', **kwargs)
|
|
vae.save_pretrained(target_dir / 'sd-vae-ft-mse', safe_serialization=True)
|
|
|
|
# safety checking
|
|
logger.info('Downloading safety checker')
|
|
repo_id = "CompVis/stable-diffusion-safety-checker"
|
|
pipeline = AutoFeatureExtractor.from_pretrained(repo_id,**kwargs)
|
|
pipeline.save_pretrained(target_dir / 'stable-diffusion-safety-checker', safe_serialization=True)
|
|
|
|
pipeline = StableDiffusionSafetyChecker.from_pretrained(repo_id,**kwargs)
|
|
pipeline.save_pretrained(target_dir / 'stable-diffusion-safety-checker', safe_serialization=True)
|
|
except KeyboardInterrupt:
|
|
raise
|
|
except Exception as e:
|
|
logger.error(str(e))
|
|
|
|
# ---------------------------------------------
|
|
def download_realesrgan():
|
|
logger.info("Installing models from RealESRGAN...")
|
|
model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth"
|
|
wdn_model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth"
|
|
|
|
model_dest = config.root_path / "models/core/upscaling/realesrgan/realesr-general-x4v3.pth"
|
|
wdn_model_dest = config.root_path / "models/core/upscaling/realesrgan/realesr-general-wdn-x4v3.pth"
|
|
|
|
download_with_progress_bar(model_url, str(model_dest), "RealESRGAN")
|
|
download_with_progress_bar(wdn_model_url, str(wdn_model_dest), "RealESRGANwdn")
|
|
|
|
|
|
def download_gfpgan():
|
|
logger.info("Installing GFPGAN models...")
|
|
for model in (
|
|
[
|
|
"https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth",
|
|
"./models/core/face_restoration/gfpgan/GFPGANv1.4.pth",
|
|
],
|
|
[
|
|
"https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth",
|
|
"./models/core/face_restoration/gfpgan/weights/detection_Resnet50_Final.pth",
|
|
],
|
|
[
|
|
"https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth",
|
|
"./models/core/face_restoration/gfpgan/weights/parsing_parsenet.pth",
|
|
],
|
|
):
|
|
model_url, model_dest = model[0], config.root_path / model[1]
|
|
download_with_progress_bar(model_url, str(model_dest), "GFPGAN weights")
|
|
|
|
|
|
# ---------------------------------------------
|
|
def download_codeformer():
|
|
logger.info("Installing CodeFormer model file...")
|
|
model_url = (
|
|
"https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth"
|
|
)
|
|
model_dest = config.root_path / "models/core/face_restoration/codeformer/codeformer.pth"
|
|
download_with_progress_bar(model_url, str(model_dest), "CodeFormer")
|
|
|
|
|
|
# ---------------------------------------------
|
|
def download_clipseg():
|
|
logger.info("Installing clipseg model for text-based masking...")
|
|
CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined"
|
|
try:
|
|
hf_download_from_pretrained(AutoProcessor, CLIPSEG_MODEL, config.root_path / 'models/core/misc/clipseg')
|
|
hf_download_from_pretrained(CLIPSegForImageSegmentation, CLIPSEG_MODEL, config.root_path / 'models/core/misc/clipseg')
|
|
except Exception:
|
|
logger.info("Error installing clipseg model:")
|
|
logger.info(traceback.format_exc())
|
|
|
|
|
|
def download_support_models():
|
|
download_realesrgan()
|
|
download_gfpgan()
|
|
download_codeformer()
|
|
download_clipseg()
|
|
download_conversion_models()
|
|
|
|
# -------------------------------------
|
|
def get_root(root: str = None) -> str:
|
|
if root:
|
|
return root
|
|
elif os.environ.get("INVOKEAI_ROOT"):
|
|
return os.environ.get("INVOKEAI_ROOT")
|
|
else:
|
|
return str(config.root_path)
|
|
|
|
# -------------------------------------
|
|
class editOptsForm(CyclingForm, npyscreen.FormMultiPage):
|
|
# for responsive resizing - disabled
|
|
# FIX_MINIMUM_SIZE_WHEN_CREATED = False
|
|
|
|
def create(self):
|
|
program_opts = self.parentApp.program_opts
|
|
old_opts = self.parentApp.invokeai_opts
|
|
first_time = not (config.root_path / 'invokeai.yaml').exists()
|
|
access_token = HfFolder.get_token()
|
|
window_width, window_height = get_terminal_size()
|
|
label = """Configure startup settings. You can come back and change these later.
|
|
Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields.
|
|
Use cursor arrows to make a checkbox selection, and space to toggle.
|
|
"""
|
|
for i in textwrap.wrap(label,width=window_width-6):
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value=i,
|
|
editable=False,
|
|
color="CONTROL",
|
|
)
|
|
|
|
self.nextrely += 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.TitleFixedText,
|
|
name="== BASIC OPTIONS ==",
|
|
begin_entry_at=0,
|
|
editable=False,
|
|
color="CONTROL",
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely -= 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value="Select an output directory for images:",
|
|
editable=False,
|
|
color="CONTROL",
|
|
)
|
|
self.outdir = self.add_widget_intelligent(
|
|
npyscreen.TitleFilename,
|
|
name="(<tab> autocompletes, ctrl-N advances):",
|
|
value=str(default_output_dir()),
|
|
select_dir=True,
|
|
must_exist=False,
|
|
use_two_lines=False,
|
|
labelColor="GOOD",
|
|
begin_entry_at=40,
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely += 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value="Activate the NSFW checker to blur images showing potential sexual imagery:",
|
|
editable=False,
|
|
color="CONTROL",
|
|
)
|
|
self.nsfw_checker = self.add_widget_intelligent(
|
|
npyscreen.Checkbox,
|
|
name="NSFW checker",
|
|
value=old_opts.nsfw_checker,
|
|
relx=5,
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely += 1
|
|
label = """If you have an account at HuggingFace you may optionally paste your access token here
|
|
to allow InvokeAI to download restricted styles & subjects from the "Concept Library". See https://huggingface.co/settings/tokens.
|
|
"""
|
|
for line in textwrap.wrap(label,width=window_width-6):
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value=line,
|
|
editable=False,
|
|
color="CONTROL",
|
|
)
|
|
|
|
self.hf_token = self.add_widget_intelligent(
|
|
npyscreen.TitlePassword,
|
|
name="Access Token (ctrl-shift-V pastes):",
|
|
value=access_token,
|
|
begin_entry_at=42,
|
|
use_two_lines=False,
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely += 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.TitleFixedText,
|
|
name="== ADVANCED OPTIONS ==",
|
|
begin_entry_at=0,
|
|
editable=False,
|
|
color="CONTROL",
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely -= 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.TitleFixedText,
|
|
name="GPU Management",
|
|
begin_entry_at=0,
|
|
editable=False,
|
|
color="CONTROL",
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely -= 1
|
|
self.free_gpu_mem = self.add_widget_intelligent(
|
|
npyscreen.Checkbox,
|
|
name="Free GPU memory after each generation",
|
|
value=old_opts.free_gpu_mem,
|
|
relx=5,
|
|
scroll_exit=True,
|
|
)
|
|
self.xformers_enabled = self.add_widget_intelligent(
|
|
npyscreen.Checkbox,
|
|
name="Enable xformers support if available",
|
|
value=old_opts.xformers_enabled,
|
|
relx=5,
|
|
scroll_exit=True,
|
|
)
|
|
self.always_use_cpu = self.add_widget_intelligent(
|
|
npyscreen.Checkbox,
|
|
name="Force CPU to be used on GPU systems",
|
|
value=old_opts.always_use_cpu,
|
|
relx=5,
|
|
scroll_exit=True,
|
|
)
|
|
precision = old_opts.precision or (
|
|
"float32" if program_opts.full_precision else "auto"
|
|
)
|
|
self.precision = self.add_widget_intelligent(
|
|
npyscreen.TitleSelectOne,
|
|
name="Precision",
|
|
values=PRECISION_CHOICES,
|
|
value=PRECISION_CHOICES.index(precision),
|
|
begin_entry_at=3,
|
|
max_height=len(PRECISION_CHOICES) + 1,
|
|
scroll_exit=True,
|
|
)
|
|
self.max_loaded_models = self.add_widget_intelligent(
|
|
IntTitleSlider,
|
|
name="Number of models to cache in CPU memory (each will use 2-4 GB!)",
|
|
value=old_opts.max_loaded_models,
|
|
out_of=10,
|
|
lowest=1,
|
|
begin_entry_at=4,
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely += 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value="Directories containing textual inversion, controlnet and LoRA models (<tab> autocompletes, ctrl-N advances):",
|
|
editable=False,
|
|
color="CONTROL",
|
|
)
|
|
self.autoimport_dirs = {}
|
|
for description, config_name, path in autoimport_paths(old_opts):
|
|
self.autoimport_dirs[config_name] = self.add_widget_intelligent(
|
|
npyscreen.TitleFilename,
|
|
name=description+':',
|
|
value=str(path),
|
|
select_dir=True,
|
|
must_exist=False,
|
|
use_two_lines=False,
|
|
labelColor="GOOD",
|
|
begin_entry_at=32,
|
|
scroll_exit=True
|
|
)
|
|
self.nextrely += 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.TitleFixedText,
|
|
name="== LICENSE ==",
|
|
begin_entry_at=0,
|
|
editable=False,
|
|
color="CONTROL",
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely -= 1
|
|
label = """BY DOWNLOADING THE STABLE DIFFUSION WEIGHT FILES, YOU AGREE TO HAVE READ
|
|
AND ACCEPTED THE CREATIVEML RESPONSIBLE AI LICENSE LOCATED AT
|
|
https://huggingface.co/spaces/CompVis/stable-diffusion-license
|
|
"""
|
|
for i in textwrap.wrap(label,width=window_width-6):
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value=i,
|
|
editable=False,
|
|
color="CONTROL",
|
|
)
|
|
self.license_acceptance = self.add_widget_intelligent(
|
|
npyscreen.Checkbox,
|
|
name="I accept the CreativeML Responsible AI License",
|
|
value=not first_time,
|
|
relx=2,
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely += 1
|
|
label = (
|
|
"DONE"
|
|
if program_opts.skip_sd_weights or program_opts.default_only
|
|
else "NEXT"
|
|
)
|
|
self.ok_button = self.add_widget_intelligent(
|
|
CenteredButtonPress,
|
|
name=label,
|
|
relx=(window_width - len(label)) // 2,
|
|
rely=-3,
|
|
when_pressed_function=self.on_ok,
|
|
)
|
|
|
|
def on_ok(self):
|
|
options = self.marshall_arguments()
|
|
if self.validate_field_values(options):
|
|
self.parentApp.new_opts = options
|
|
if hasattr(self.parentApp, "model_select"):
|
|
self.parentApp.setNextForm("MODELS")
|
|
else:
|
|
self.parentApp.setNextForm(None)
|
|
self.editing = False
|
|
else:
|
|
self.editing = True
|
|
|
|
def validate_field_values(self, opt: Namespace) -> bool:
|
|
bad_fields = []
|
|
if not opt.license_acceptance:
|
|
bad_fields.append(
|
|
"Please accept the license terms before proceeding to model downloads"
|
|
)
|
|
if not Path(opt.outdir).parent.exists():
|
|
bad_fields.append(
|
|
f"The output directory does not seem to be valid. Please check that {str(Path(opt.outdir).parent)} is an existing directory."
|
|
)
|
|
if len(bad_fields) > 0:
|
|
message = "The following problems were detected and must be corrected:\n"
|
|
for problem in bad_fields:
|
|
message += f"* {problem}\n"
|
|
npyscreen.notify_confirm(message)
|
|
return False
|
|
else:
|
|
return True
|
|
|
|
def marshall_arguments(self):
|
|
new_opts = Namespace()
|
|
|
|
for attr in [
|
|
"outdir",
|
|
"nsfw_checker",
|
|
"free_gpu_mem",
|
|
"max_loaded_models",
|
|
"xformers_enabled",
|
|
"always_use_cpu",
|
|
]:
|
|
setattr(new_opts, attr, getattr(self, attr).value)
|
|
|
|
for attr in self.autoimport_dirs:
|
|
directory = Path(self.autoimport_dirs[attr].value)
|
|
if directory.is_relative_to(config.root_path):
|
|
directory = directory.relative_to(config.root_path)
|
|
setattr(new_opts, attr, directory)
|
|
|
|
new_opts.hf_token = self.hf_token.value
|
|
new_opts.license_acceptance = self.license_acceptance.value
|
|
new_opts.precision = PRECISION_CHOICES[self.precision.value[0]]
|
|
|
|
# widget library workaround to make max_loaded_models an int rather than a float
|
|
new_opts.max_loaded_models = int(new_opts.max_loaded_models)
|
|
|
|
return new_opts
|
|
|
|
|
|
class EditOptApplication(npyscreen.NPSAppManaged):
|
|
def __init__(self, program_opts: Namespace, invokeai_opts: Namespace):
|
|
super().__init__()
|
|
self.program_opts = program_opts
|
|
self.invokeai_opts = invokeai_opts
|
|
self.user_cancelled = False
|
|
self.autoload_pending = True
|
|
self.install_selections = default_user_selections(program_opts)
|
|
|
|
def onStart(self):
|
|
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
|
|
self.options = self.addForm(
|
|
"MAIN",
|
|
editOptsForm,
|
|
name="InvokeAI Startup Options",
|
|
cycle_widgets=True,
|
|
)
|
|
if not (self.program_opts.skip_sd_weights or self.program_opts.default_only):
|
|
self.model_select = self.addForm(
|
|
"MODELS",
|
|
addModelsForm,
|
|
name="Install Stable Diffusion Models",
|
|
multipage=True,
|
|
cycle_widgets=True,
|
|
)
|
|
|
|
def new_opts(self):
|
|
return self.options.marshall_arguments()
|
|
|
|
|
|
def edit_opts(program_opts: Namespace, invokeai_opts: Namespace) -> argparse.Namespace:
|
|
editApp = EditOptApplication(program_opts, invokeai_opts)
|
|
editApp.run()
|
|
return editApp.new_opts()
|
|
|
|
|
|
def default_startup_options(init_file: Path) -> Namespace:
|
|
opts = InvokeAIAppConfig.get_config()
|
|
if not init_file.exists():
|
|
opts.nsfw_checker = True
|
|
return opts
|
|
|
|
def default_user_selections(program_opts: Namespace) -> InstallSelections:
|
|
installer = ModelInstall(config)
|
|
models = installer.all_models()
|
|
return InstallSelections(
|
|
install_models=[models[installer.default_model()].path or models[installer.default_model()].repo_id]
|
|
if program_opts.default_only
|
|
else [models[x].path or models[x].repo_id for x in installer.recommended_models()]
|
|
if program_opts.yes_to_all
|
|
else list(),
|
|
# scan_directory=None,
|
|
# autoscan_on_startup=None,
|
|
)
|
|
|
|
# -------------------------------------
|
|
def autoimport_paths(config: InvokeAIAppConfig):
|
|
return [
|
|
('Checkpoints & diffusers models', 'autoimport_dir', config.root_path / config.autoimport_dir),
|
|
('LoRA/LyCORIS models', 'lora_dir', config.root_path / config.lora_dir),
|
|
('Controlnet models', 'controlnet_dir', config.root_path / config.controlnet_dir),
|
|
('Textual Inversion Embeddings', 'embedding_dir', config.root_path / config.embedding_dir),
|
|
]
|
|
|
|
# -------------------------------------
|
|
def initialize_rootdir(root: Path, yes_to_all: bool = False):
|
|
logger.info("** INITIALIZING INVOKEAI RUNTIME DIRECTORY **")
|
|
for name in (
|
|
"models",
|
|
"databases",
|
|
"text-inversion-output",
|
|
"text-inversion-training-data",
|
|
"configs"
|
|
):
|
|
os.makedirs(os.path.join(root, name), exist_ok=True)
|
|
for model_type in ModelType:
|
|
Path(root, 'autoimport', model_type.value).mkdir(parents=True, exist_ok=True)
|
|
|
|
configs_src = Path(configs.__path__[0])
|
|
configs_dest = root / "configs"
|
|
if not os.path.samefile(configs_src, configs_dest):
|
|
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
|
|
|
|
dest = root / 'models'
|
|
for model_base in BaseModelType:
|
|
for model_type in ModelType:
|
|
path = dest / model_base.value / model_type.value
|
|
path.mkdir(parents=True, exist_ok=True)
|
|
path = dest / 'core'
|
|
path.mkdir(parents=True, exist_ok=True)
|
|
|
|
with open(root / 'configs' / 'models.yaml','w') as yaml_file:
|
|
yaml_file.write(yaml.dump({'__metadata__':
|
|
{'version':'3.0.0'}
|
|
}
|
|
)
|
|
)
|
|
|
|
# -------------------------------------
|
|
def run_console_ui(
|
|
program_opts: Namespace, initfile: Path = None
|
|
) -> (Namespace, Namespace):
|
|
# parse_args() will read from init file if present
|
|
invokeai_opts = default_startup_options(initfile)
|
|
invokeai_opts.root = program_opts.root
|
|
|
|
# The third argument is needed in the Windows 11 environment to
|
|
# launch a console window running this program.
|
|
set_min_terminal_size(MIN_COLS, MIN_LINES,'invokeai-configure')
|
|
|
|
# the install-models application spawns a subprocess to install
|
|
# models, and will crash unless this is set before running.
|
|
import torch
|
|
torch.multiprocessing.set_start_method("spawn")
|
|
|
|
editApp = EditOptApplication(program_opts, invokeai_opts)
|
|
editApp.run()
|
|
if editApp.user_cancelled:
|
|
return (None, None)
|
|
else:
|
|
return (editApp.new_opts, editApp.install_selections)
|
|
|
|
|
|
# -------------------------------------
|
|
def write_opts(opts: Namespace, init_file: Path):
|
|
"""
|
|
Update the invokeai.yaml file with values from current settings.
|
|
"""
|
|
# this will load current settings
|
|
new_config = InvokeAIAppConfig.get_config()
|
|
new_config.root = config.root
|
|
|
|
for key,value in opts.__dict__.items():
|
|
if hasattr(new_config,key):
|
|
setattr(new_config,key,value)
|
|
|
|
with open(init_file,'w', encoding='utf-8') as file:
|
|
file.write(new_config.to_yaml())
|
|
|
|
# -------------------------------------
|
|
def default_output_dir() -> Path:
|
|
return config.root_path / "outputs"
|
|
|
|
# # -------------------------------------
|
|
# def default_embedding_dir() -> Path:
|
|
# return config.root_path / "embeddings"
|
|
|
|
# # -------------------------------------
|
|
# def default_lora_dir() -> Path:
|
|
# return config.root_path / "loras"
|
|
|
|
# # -------------------------------------
|
|
# def default_controlnet_dir() -> Path:
|
|
# return config.root_path / "controlnets"
|
|
|
|
# -------------------------------------
|
|
def write_default_options(program_opts: Namespace, initfile: Path):
|
|
opt = default_startup_options(initfile)
|
|
write_opts(opt, initfile)
|
|
|
|
# -------------------------------------
|
|
# Here we bring in
|
|
# the legacy Args object in order to parse
|
|
# the old init file and write out the new
|
|
# yaml format.
|
|
def migrate_init_file(legacy_format:Path):
|
|
old = legacy_parser.parse_args([f'@{str(legacy_format)}'])
|
|
new = InvokeAIAppConfig.get_config()
|
|
|
|
fields = list(get_type_hints(InvokeAIAppConfig).keys())
|
|
for attr in fields:
|
|
if hasattr(old,attr):
|
|
setattr(new,attr,getattr(old,attr))
|
|
|
|
# a few places where the field names have changed and we have to
|
|
# manually add in the new names/values
|
|
new.nsfw_checker = old.safety_checker
|
|
new.xformers_enabled = old.xformers
|
|
new.conf_path = old.conf
|
|
new.root = legacy_format.parent.resolve()
|
|
|
|
invokeai_yaml = legacy_format.parent / 'invokeai.yaml'
|
|
with open(invokeai_yaml,"w", encoding="utf-8") as outfile:
|
|
outfile.write(new.to_yaml())
|
|
|
|
legacy_format.replace(legacy_format.parent / 'invokeai.init.orig')
|
|
|
|
# -------------------------------------
|
|
def migrate_models(root: Path):
|
|
from invokeai.backend.install.migrate_to_3 import do_migrate
|
|
do_migrate(root, root)
|
|
|
|
def migrate_if_needed(opt: Namespace, root: Path)->bool:
|
|
# We check for to see if the runtime directory is correctly initialized.
|
|
old_init_file = root / 'invokeai.init'
|
|
new_init_file = root / 'invokeai.yaml'
|
|
old_hub = root / 'models/hub'
|
|
migration_needed = old_init_file.exists() and not new_init_file.exists() or old_hub.exists()
|
|
|
|
if migration_needed:
|
|
if opt.yes_to_all or \
|
|
yes_or_no(f'{str(config.root_path)} appears to be a 2.3 format root directory. Convert to version 3.0?'):
|
|
|
|
logger.info('** Migrating invokeai.init to invokeai.yaml')
|
|
migrate_init_file(old_init_file)
|
|
config.parse_args(argv=[],conf=OmegaConf.load(new_init_file))
|
|
|
|
if old_hub.exists():
|
|
migrate_models(config.root_path)
|
|
else:
|
|
print('Cannot continue without conversion. Aborting.')
|
|
|
|
return migration_needed
|
|
|
|
|
|
# -------------------------------------
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="InvokeAI model downloader")
|
|
parser.add_argument(
|
|
"--skip-sd-weights",
|
|
dest="skip_sd_weights",
|
|
action=argparse.BooleanOptionalAction,
|
|
default=False,
|
|
help="skip downloading the large Stable Diffusion weight files",
|
|
)
|
|
parser.add_argument(
|
|
"--skip-support-models",
|
|
dest="skip_support_models",
|
|
action=argparse.BooleanOptionalAction,
|
|
default=False,
|
|
help="skip downloading the support models",
|
|
)
|
|
parser.add_argument(
|
|
"--full-precision",
|
|
dest="full_precision",
|
|
action=argparse.BooleanOptionalAction,
|
|
type=bool,
|
|
default=False,
|
|
help="use 32-bit weights instead of faster 16-bit weights",
|
|
)
|
|
parser.add_argument(
|
|
"--yes",
|
|
"-y",
|
|
dest="yes_to_all",
|
|
action="store_true",
|
|
help='answer "yes" to all prompts',
|
|
)
|
|
parser.add_argument(
|
|
"--default_only",
|
|
action="store_true",
|
|
help="when --yes specified, only install the default model",
|
|
)
|
|
parser.add_argument(
|
|
"--config_file",
|
|
"-c",
|
|
dest="config_file",
|
|
type=str,
|
|
default=None,
|
|
help="path to configuration file to create",
|
|
)
|
|
parser.add_argument(
|
|
"--root_dir",
|
|
dest="root",
|
|
type=str,
|
|
default=None,
|
|
help="path to root of install directory",
|
|
)
|
|
opt = parser.parse_args()
|
|
|
|
invoke_args = []
|
|
if opt.root:
|
|
invoke_args.extend(['--root',opt.root])
|
|
if opt.full_precision:
|
|
invoke_args.extend(['--precision','float32'])
|
|
config.parse_args(invoke_args)
|
|
logger = InvokeAILogger().getLogger(config=config)
|
|
|
|
errors = set()
|
|
|
|
try:
|
|
# if we do a root migration/upgrade, then we are keeping previous
|
|
# configuration and we are done.
|
|
if migrate_if_needed(opt, config.root_path):
|
|
sys.exit(0)
|
|
|
|
if not config.model_conf_path.exists():
|
|
initialize_rootdir(config.root_path, opt.yes_to_all)
|
|
|
|
models_to_download = default_user_selections(opt)
|
|
new_init_file = config.root_path / 'invokeai.yaml'
|
|
if opt.yes_to_all:
|
|
write_default_options(opt, new_init_file)
|
|
init_options = Namespace(
|
|
precision="float32" if opt.full_precision else "float16"
|
|
)
|
|
else:
|
|
init_options, models_to_download = run_console_ui(opt, new_init_file)
|
|
if init_options:
|
|
write_opts(init_options, new_init_file)
|
|
else:
|
|
logger.info(
|
|
'\n** CANCELLED AT USER\'S REQUEST. USE THE "invoke.sh" LAUNCHER TO RUN LATER **\n'
|
|
)
|
|
sys.exit(0)
|
|
|
|
if opt.skip_support_models:
|
|
logger.info("SKIPPING SUPPORT MODEL DOWNLOADS PER USER REQUEST")
|
|
else:
|
|
logger.info("CHECKING/UPDATING SUPPORT MODELS")
|
|
download_support_models()
|
|
|
|
if opt.skip_sd_weights:
|
|
logger.info("\n** SKIPPING DIFFUSION WEIGHTS DOWNLOAD PER USER REQUEST **")
|
|
elif models_to_download:
|
|
logger.info("\n** DOWNLOADING DIFFUSION WEIGHTS **")
|
|
process_and_execute(opt, models_to_download)
|
|
|
|
postscript(errors=errors)
|
|
if not opt.yes_to_all:
|
|
input('Press any key to continue...')
|
|
except KeyboardInterrupt:
|
|
print("\nGoodbye! Come back soon.")
|
|
|
|
|
|
# -------------------------------------
|
|
if __name__ == "__main__":
|
|
main()
|