mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
46 lines
1.1 KiB
Python
46 lines
1.1 KiB
Python
from contextlib import contextmanager
|
|
from dataclasses import dataclass
|
|
from typing import Callable, Dict, List, Optional
|
|
|
|
import torch
|
|
from diffusers import UNet2DConditionModel
|
|
|
|
|
|
@dataclass
|
|
class InjectionInfo:
|
|
type: str
|
|
name: str
|
|
order: Optional[int]
|
|
function: Callable
|
|
|
|
|
|
def callback(name: str, order: int = 0):
|
|
def _decorator(func):
|
|
func.__inj_info__ = {
|
|
"type": "callback",
|
|
"name": name,
|
|
"order": order,
|
|
}
|
|
return func
|
|
|
|
return _decorator
|
|
|
|
|
|
class ExtensionBase:
|
|
def __init__(self):
|
|
self.injections: List[InjectionInfo] = []
|
|
for func_name in dir(self):
|
|
func = getattr(self, func_name)
|
|
if not callable(func) or not hasattr(func, "__inj_info__"):
|
|
continue
|
|
|
|
self.injections.append(InjectionInfo(**func.__inj_info__, function=func))
|
|
|
|
@contextmanager
|
|
def patch_attention_processor(self, attention_processor_cls: object):
|
|
yield None
|
|
|
|
@contextmanager
|
|
def patch_unet(self, state_dict: Dict[str, torch.Tensor], unet: UNet2DConditionModel):
|
|
yield None
|