mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
367 lines
18 KiB
Python
367 lines
18 KiB
Python
import secrets
|
|
from dataclasses import dataclass
|
|
from typing import List, Optional, Union, Callable
|
|
|
|
import torch
|
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
|
from diffusers.pipeline_utils import DiffusionPipeline
|
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
|
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
|
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
|
|
|
from ldm.modules.encoders.modules import WeightedFrozenCLIPEmbedder
|
|
|
|
|
|
@dataclass
|
|
class PipelineIntermediateState:
|
|
run_id: str
|
|
step: int
|
|
timestep: int
|
|
latents: torch.Tensor
|
|
predicted_original: Optional[torch.Tensor] = None
|
|
|
|
|
|
class StableDiffusionGeneratorPipeline(DiffusionPipeline):
|
|
r"""
|
|
Pipeline for text-to-image generation using Stable Diffusion.
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|
|
|
Implementation note: This class started as a refactored copy of diffusers.StableDiffusionPipeline.
|
|
Hopefully future versions of diffusers provide access to more of these functions so that we don't
|
|
need to duplicate them here: https://github.com/huggingface/diffusers/issues/551#issuecomment-1281508384
|
|
|
|
Args:
|
|
vae ([`AutoencoderKL`]):
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
text_encoder ([`CLIPTextModel`]):
|
|
Frozen text-encoder. Stable Diffusion uses the text portion of
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
|
tokenizer (`CLIPTokenizer`):
|
|
Tokenizer of class
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
|
scheduler ([`SchedulerMixin`]):
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
|
safety_checker ([`StableDiffusionSafetyChecker`]):
|
|
Classification module that estimates whether generated images could be considered offsensive or harmful.
|
|
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
|
feature_extractor ([`CLIPFeatureExtractor`]):
|
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
|
"""
|
|
|
|
ID_LENGTH = 8
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
tokenizer: CLIPTokenizer,
|
|
unet: UNet2DConditionModel,
|
|
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
|
safety_checker: StableDiffusionSafetyChecker,
|
|
feature_extractor: CLIPFeatureExtractor,
|
|
):
|
|
super().__init__()
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
safety_checker=safety_checker,
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
# InvokeAI's interface for text embeddings and whatnot
|
|
self.clip_embedder = WeightedFrozenCLIPEmbedder(
|
|
tokenizer=self.tokenizer,
|
|
transformer=self.text_encoder
|
|
)
|
|
|
|
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
|
r"""
|
|
Enable sliced attention computation.
|
|
|
|
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
|
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
|
|
|
Args:
|
|
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
|
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
|
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
|
`attention_head_dim` must be a multiple of `slice_size`.
|
|
"""
|
|
if slice_size == "auto":
|
|
# half the attention head size is usually a good trade-off between
|
|
# speed and memory
|
|
slice_size = self.unet.config.attention_head_dim // 2
|
|
self.unet.set_attention_slice(slice_size)
|
|
|
|
def disable_attention_slicing(self):
|
|
r"""
|
|
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
|
back to computing attention in one step.
|
|
"""
|
|
# set slice_size = `None` to disable `attention slicing`
|
|
self.enable_attention_slicing(None)
|
|
|
|
def enable_xformers_memory_efficient_attention(self):
|
|
r"""
|
|
Enable memory efficient attention as implemented in xformers.
|
|
|
|
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
|
|
time. Speed up at training time is not guaranteed.
|
|
|
|
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
|
|
is used.
|
|
"""
|
|
self.unet.set_use_memory_efficient_attention_xformers(True)
|
|
|
|
def disable_xformers_memory_efficient_attention(self):
|
|
r"""
|
|
Disable memory efficient attention as implemented in xformers.
|
|
"""
|
|
self.unet.set_use_memory_efficient_attention_xformers(False)
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]],
|
|
height: Optional[int] = 512,
|
|
width: Optional[int] = 512,
|
|
num_inference_steps: Optional[int] = 50,
|
|
guidance_scale: Optional[float] = 7.5,
|
|
generator: Optional[torch.Generator] = None,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
callback: Optional[Callable[[PipelineIntermediateState], None]] = None,
|
|
**extra_step_kwargs,
|
|
):
|
|
r"""
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`):
|
|
The prompt or prompts to guide the image generation.
|
|
height (`int`, *optional*, defaults to 512):
|
|
The height in pixels of the generated image.
|
|
width (`int`, *optional*, defaults to 512):
|
|
The width in pixels of the generated image.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
usually at the expense of lower image quality.
|
|
generator (`torch.Generator`, *optional*):
|
|
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
|
deterministic.
|
|
latents (`torch.FloatTensor`, *optional*):
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
tensor will ge generated by sampling using the supplied random `generator`.
|
|
|
|
Returns:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
|
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
|
(nsfw) content, according to the `safety_checker`.
|
|
"""
|
|
result = None
|
|
for result in self.generate(
|
|
prompt, height=height, width=width, num_inference_steps=num_inference_steps,
|
|
guidance_scale=guidance_scale, generator=generator, latents=latents,
|
|
**extra_step_kwargs):
|
|
if callback is not None:
|
|
callback(result)
|
|
if result is None:
|
|
raise AssertionError("why was that an empty generator?")
|
|
return result
|
|
|
|
def image_from_embeddings(self, latents: torch.Tensor, num_inference_steps: int,
|
|
text_embeddings: torch.Tensor, guidance_scale: float,
|
|
*, callback: Callable[[PipelineIntermediateState], None]=None, run_id=None,
|
|
**extra_step_kwargs) -> StableDiffusionPipelineOutput:
|
|
self.scheduler.set_timesteps(num_inference_steps)
|
|
result = None
|
|
for result in self.generate_from_embeddings(
|
|
latents, text_embeddings, guidance_scale, run_id, **extra_step_kwargs):
|
|
if callback is not None and isinstance(result, PipelineIntermediateState):
|
|
callback(result)
|
|
if result is None:
|
|
raise AssertionError("why was that an empty generator?")
|
|
return result
|
|
|
|
def generate(
|
|
self,
|
|
prompt: Union[str, List[str]],
|
|
*,
|
|
opposing_prompt: Union[str, List[str]] = None,
|
|
height: Optional[int] = 512,
|
|
width: Optional[int] = 512,
|
|
num_inference_steps: Optional[int] = 50,
|
|
guidance_scale: Optional[float] = 7.5,
|
|
generator: Optional[torch.Generator] = None,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
run_id: str = None,
|
|
**extra_step_kwargs,
|
|
):
|
|
if isinstance(prompt, str):
|
|
batch_size = 1
|
|
else:
|
|
batch_size = len(prompt)
|
|
|
|
if height % 8 != 0 or width % 8 != 0:
|
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
|
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
text_embeddings = self.get_text_embeddings(prompt, opposing_prompt, do_classifier_free_guidance, batch_size)\
|
|
.to(self.unet.device)
|
|
self.scheduler.set_timesteps(num_inference_steps)
|
|
latents = self.prepare_latents(latents, batch_size, height, width, generator, self.unet.dtype)
|
|
|
|
yield from self.generate_from_embeddings(latents, text_embeddings, guidance_scale, run_id, **extra_step_kwargs)
|
|
|
|
def generate_from_embeddings(self, latents: torch.Tensor, text_embeddings: torch.Tensor, guidance_scale: float,
|
|
run_id: str = None, **extra_step_kwargs):
|
|
if run_id is None:
|
|
run_id = secrets.token_urlsafe(self.ID_LENGTH)
|
|
# scale the initial noise by the standard deviation required by the scheduler
|
|
latents *= self.scheduler.init_noise_sigma
|
|
yield PipelineIntermediateState(run_id=run_id, step=-1, timestep=self.scheduler.num_train_timesteps,
|
|
latents=latents)
|
|
# NOTE: Depends on scheduler being already initialized!
|
|
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
|
|
step_output = self.step(t, latents, guidance_scale, text_embeddings, **extra_step_kwargs)
|
|
latents = step_output.prev_sample
|
|
predicted_original = getattr(step_output, 'pred_original_sample', None)
|
|
yield PipelineIntermediateState(run_id=run_id, step=i, timestep=int(t), latents=latents,
|
|
predicted_original=predicted_original)
|
|
|
|
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
|
torch.cuda.empty_cache()
|
|
|
|
image = self.decode_to_image(latents)
|
|
output = StableDiffusionPipelineOutput(images=image, nsfw_content_detected=[])
|
|
yield self.check_for_safety(output)
|
|
|
|
@torch.inference_mode()
|
|
def step(self, t, latents: torch.Tensor, guidance_scale, text_embeddings: torch.Tensor, **extra_step_kwargs):
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
# predict the noise residual
|
|
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
|
|
|
# perform guidance
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
return self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)
|
|
|
|
@torch.inference_mode()
|
|
def check_for_safety(self, output):
|
|
if not getattr(self, 'feature_extractor') or not getattr(self, 'safety_checker'):
|
|
return output
|
|
images = output.images
|
|
safety_checker_output = self.feature_extractor(self.numpy_to_pil(images),
|
|
return_tensors="pt").to(self.device)
|
|
screened_images, has_nsfw_concept = self.safety_checker(
|
|
images=images, clip_input=safety_checker_output.pixel_values)
|
|
return StableDiffusionPipelineOutput(screened_images, has_nsfw_concept)
|
|
|
|
@torch.inference_mode()
|
|
def decode_to_image(self, latents):
|
|
# scale and decode the image latents with vae
|
|
latents = 1 / 0.18215 * latents
|
|
image = self.vae.decode(latents).sample
|
|
image = (image / 2 + 0.5).clamp(0, 1)
|
|
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
|
return image
|
|
|
|
@torch.inference_mode()
|
|
def get_text_embeddings(self,
|
|
prompt: Union[str, List[str]],
|
|
opposing_prompt: Union[str, List[str]],
|
|
do_classifier_free_guidance: bool,
|
|
batch_size: int):
|
|
# get prompt text embeddings
|
|
text_input = self._tokenize(prompt)
|
|
|
|
text_embeddings = self.text_encoder(text_input.input_ids)[0]
|
|
# get unconditional embeddings for classifier free guidance
|
|
if do_classifier_free_guidance:
|
|
# opposing prompt defaults to blank caption for everything in the batch
|
|
text_anti_input = self._tokenize(opposing_prompt or [""] * batch_size)
|
|
uncond_embeddings = self.text_encoder(text_anti_input.input_ids)[0]
|
|
|
|
# For classifier free guidance, we need to do two forward passes.
|
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
|
# to avoid doing two forward passes
|
|
# FIXME: assert these two are the same size
|
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
|
return text_embeddings
|
|
|
|
@torch.inference_mode()
|
|
def get_learned_conditioning(self, c: List[List[str]], *, return_tokens=True, fragment_weights=None):
|
|
"""
|
|
Compatibility function for ldm.models.diffusion.ddpm.LatentDiffusion.
|
|
"""
|
|
return self.clip_embedder.encode(c, return_tokens=return_tokens, fragment_weights=fragment_weights)
|
|
|
|
@torch.inference_mode()
|
|
def _tokenize(self, prompt: Union[str, List[str]]):
|
|
return self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
@property
|
|
def channels(self) -> int:
|
|
"""Compatible with DiffusionWrapper"""
|
|
return self.unet.in_channels
|
|
|
|
def prepare_latents(self, latents, batch_size, height, width, generator, dtype):
|
|
# get the initial random noise unless the user supplied it
|
|
# Unlike in other pipelines, latents need to be generated in the target device
|
|
# for 1-to-1 results reproducibility with the CompVis implementation.
|
|
# However this currently doesn't work in `mps`.
|
|
latents_shape = (batch_size, self.unet.in_channels, height // 8, width // 8)
|
|
if latents is None:
|
|
latents = torch.randn(
|
|
latents_shape,
|
|
generator=generator,
|
|
device=self.unet.device,
|
|
dtype=dtype
|
|
)
|
|
else:
|
|
if latents.shape != latents_shape:
|
|
raise ValueError(
|
|
f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
|
if latents.device != self.unet.device:
|
|
raise ValueError(f"Unexpected latents device, got {latents.device}, "
|
|
f"expected {self.unet.device}")
|
|
|
|
# scale the initial noise by the standard deviation required by the scheduler
|
|
latents *= self.scheduler.init_noise_sigma
|
|
return latents
|