InvokeAI/invokeai/backend/util/devices.py
2024-04-16 18:13:59 -04:00

144 lines
5.5 KiB
Python

"""Torch Device class provides torch device selection services."""
from typing import TYPE_CHECKING, Dict, Literal, Optional, Set, Union
import torch
from deprecated import deprecated
from invokeai.app.services.config.config_default import get_config
if TYPE_CHECKING:
from invokeai.backend.model_manager.config import AnyModel
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
# legacy APIs
TorchPrecisionNames = Literal["float32", "float16", "bfloat16"]
CPU_DEVICE = torch.device("cpu")
CUDA_DEVICE = torch.device("cuda")
MPS_DEVICE = torch.device("mps")
@deprecated("Use TorchDevice.choose_torch_dtype() instead.") # type: ignore
def choose_precision(device: torch.device) -> TorchPrecisionNames:
"""Return the string representation of the recommended torch device."""
torch_dtype = TorchDevice.choose_torch_dtype(device)
return PRECISION_TO_NAME[torch_dtype]
@deprecated("Use TorchDevice.choose_torch_device() instead.") # type: ignore
def choose_torch_device() -> torch.device:
"""Return the torch.device to use for accelerated inference."""
return TorchDevice.choose_torch_device()
@deprecated("Use TorchDevice.choose_torch_dtype() instead.") # type: ignore
def torch_dtype(device: torch.device) -> torch.dtype:
"""Return the torch precision for the recommended torch device."""
return TorchDevice.choose_torch_dtype(device)
NAME_TO_PRECISION: Dict[TorchPrecisionNames, torch.dtype] = {
"float32": torch.float32,
"float16": torch.float16,
"bfloat16": torch.bfloat16,
}
PRECISION_TO_NAME: Dict[torch.dtype, TorchPrecisionNames] = {v: k for k, v in NAME_TO_PRECISION.items()}
class TorchDevice:
"""Abstraction layer for torch devices."""
_model_cache: Optional["ModelCacheBase[AnyModel]"] = None
@classmethod
def set_model_cache(cls, cache: "ModelCacheBase[AnyModel]"):
"""Set the current model cache."""
cls._model_cache = cache
@classmethod
def choose_torch_device(cls) -> torch.device:
"""Return the torch.device to use for accelerated inference."""
if cls._model_cache:
return cls._model_cache.get_execution_device()
app_config = get_config()
if app_config.device != "auto":
device = torch.device(app_config.device)
elif torch.cuda.is_available():
device = CUDA_DEVICE
elif torch.backends.mps.is_available():
device = MPS_DEVICE
else:
device = CPU_DEVICE
return cls.normalize(device)
@classmethod
def execution_devices(cls) -> Set[torch.device]:
"""Return a list of torch.devices that can be used for accelerated inference."""
app_config = get_config()
if app_config.devices is None:
return cls._lookup_execution_devices()
return {torch.device(x) for x in app_config.devices}
@classmethod
def choose_torch_dtype(cls, device: Optional[torch.device] = None) -> torch.dtype:
"""Return the precision to use for accelerated inference."""
device = device or cls.choose_torch_device()
config = get_config()
if device.type == "cuda" and torch.cuda.is_available():
device_name = torch.cuda.get_device_name(device)
if "GeForce GTX 1660" in device_name or "GeForce GTX 1650" in device_name:
# These GPUs have limited support for float16
return cls._to_dtype("float32")
elif config.precision == "auto":
# Default to float16 for CUDA devices
return cls._to_dtype("float16")
else:
# Use the user-defined precision
return cls._to_dtype(config.precision)
elif device.type == "mps" and torch.backends.mps.is_available():
if config.precision == "auto":
# Default to float16 for MPS devices
return cls._to_dtype("float16")
else:
# Use the user-defined precision
return cls._to_dtype(config.precision)
# CPU / safe fallback
return cls._to_dtype("float32")
@classmethod
def get_torch_device_name(cls) -> str:
"""Return the device name for the current torch device."""
device = cls.choose_torch_device()
return torch.cuda.get_device_name(device) if device.type == "cuda" else device.type.upper()
@classmethod
def normalize(cls, device: Union[str, torch.device]) -> torch.device:
"""Add the device index to CUDA devices."""
device = torch.device(device)
if device.index is None and device.type == "cuda" and torch.cuda.is_available():
device = torch.device(device.type, torch.cuda.current_device())
return device
@classmethod
def empty_cache(cls) -> None:
"""Clear the GPU device cache."""
if torch.backends.mps.is_available():
torch.mps.empty_cache()
if torch.cuda.is_available():
torch.cuda.empty_cache()
@classmethod
def _to_dtype(cls, precision_name: TorchPrecisionNames) -> torch.dtype:
return NAME_TO_PRECISION[precision_name]
@classmethod
def _lookup_execution_devices(cls) -> Set[torch.device]:
if torch.cuda.is_available():
devices = {torch.device(f"cuda:{x}") for x in range(0, torch.cuda.device_count())}
elif torch.backends.mps.is_available():
devices = {torch.device("mps")}
else:
devices = {torch.device("cpu")}
return devices