mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
588 lines
22 KiB
Python
588 lines
22 KiB
Python
"""
|
|
Base class for invokeai.backend.generator.*
|
|
including img2img, txt2img, and inpaint
|
|
"""
|
|
from __future__ import annotations
|
|
|
|
import itertools
|
|
import dataclasses
|
|
import diffusers
|
|
import os
|
|
import random
|
|
import traceback
|
|
from abc import ABCMeta
|
|
from argparse import Namespace
|
|
from contextlib import nullcontext
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image, ImageChops, ImageFilter
|
|
from accelerate.utils import set_seed
|
|
from diffusers import DiffusionPipeline
|
|
from tqdm import trange
|
|
from typing import Callable, List, Iterator, Optional, Type, Union
|
|
from dataclasses import dataclass, field
|
|
from diffusers.schedulers import SchedulerMixin as Scheduler
|
|
|
|
import invokeai.backend.util.logging as logger
|
|
from ..image_util import configure_model_padding
|
|
from ..util.util import rand_perlin_2d
|
|
from ..safety_checker import SafetyChecker
|
|
from ..stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeline
|
|
from ..stable_diffusion.schedulers import SCHEDULER_MAP
|
|
|
|
downsampling = 8
|
|
|
|
@dataclass
|
|
class InvokeAIGeneratorBasicParams:
|
|
seed: Optional[int]=None
|
|
width: int=512
|
|
height: int=512
|
|
cfg_scale: float=7.5
|
|
steps: int=20
|
|
ddim_eta: float=0.0
|
|
scheduler: str='ddim'
|
|
precision: str='float16'
|
|
perlin: float=0.0
|
|
threshold: float=0.0
|
|
seamless: bool=False
|
|
seamless_axes: List[str]=field(default_factory=lambda: ['x', 'y'])
|
|
h_symmetry_time_pct: Optional[float]=None
|
|
v_symmetry_time_pct: Optional[float]=None
|
|
variation_amount: float = 0.0
|
|
with_variations: list=field(default_factory=list)
|
|
safety_checker: Optional[SafetyChecker]=None
|
|
|
|
@dataclass
|
|
class InvokeAIGeneratorOutput:
|
|
'''
|
|
InvokeAIGeneratorOutput is a dataclass that contains the outputs of a generation
|
|
operation, including the image, its seed, the model name used to generate the image
|
|
and the model hash, as well as all the generate() parameters that went into
|
|
generating the image (in .params, also available as attributes)
|
|
'''
|
|
image: Image.Image
|
|
seed: int
|
|
model_hash: str
|
|
attention_maps_images: List[Image.Image]
|
|
params: Namespace
|
|
|
|
# we are interposing a wrapper around the original Generator classes so that
|
|
# old code that calls Generate will continue to work.
|
|
class InvokeAIGenerator(metaclass=ABCMeta):
|
|
def __init__(self,
|
|
model_info: dict,
|
|
params: InvokeAIGeneratorBasicParams=InvokeAIGeneratorBasicParams(),
|
|
**kwargs,
|
|
):
|
|
self.model_info=model_info
|
|
self.params=params
|
|
self.kwargs = kwargs
|
|
|
|
def generate(
|
|
self,
|
|
conditioning: tuple,
|
|
scheduler,
|
|
callback: Optional[Callable]=None,
|
|
step_callback: Optional[Callable]=None,
|
|
iterations: int=1,
|
|
**keyword_args,
|
|
)->Iterator[InvokeAIGeneratorOutput]:
|
|
'''
|
|
Return an iterator across the indicated number of generations.
|
|
Each time the iterator is called it will return an InvokeAIGeneratorOutput
|
|
object. Use like this:
|
|
|
|
outputs = txt2img.generate(prompt='banana sushi', iterations=5)
|
|
for result in outputs:
|
|
print(result.image, result.seed)
|
|
|
|
In the typical case of wanting to get just a single image, iterations
|
|
defaults to 1 and do:
|
|
|
|
output = next(txt2img.generate(prompt='banana sushi')
|
|
|
|
Pass None to get an infinite iterator.
|
|
|
|
outputs = txt2img.generate(prompt='banana sushi', iterations=None)
|
|
for o in outputs:
|
|
print(o.image, o.seed)
|
|
|
|
'''
|
|
generator_args = dataclasses.asdict(self.params)
|
|
generator_args.update(keyword_args)
|
|
|
|
model_info = self.model_info
|
|
model_name = model_info.name
|
|
model_hash = model_info.hash
|
|
with model_info.context as model:
|
|
gen_class = self._generator_class()
|
|
generator = gen_class(model, self.params.precision, **self.kwargs)
|
|
if self.params.variation_amount > 0:
|
|
generator.set_variation(generator_args.get('seed'),
|
|
generator_args.get('variation_amount'),
|
|
generator_args.get('with_variations')
|
|
)
|
|
|
|
if isinstance(model, DiffusionPipeline):
|
|
for component in [model.unet, model.vae]:
|
|
configure_model_padding(component,
|
|
generator_args.get('seamless',False),
|
|
generator_args.get('seamless_axes')
|
|
)
|
|
else:
|
|
configure_model_padding(model,
|
|
generator_args.get('seamless',False),
|
|
generator_args.get('seamless_axes')
|
|
)
|
|
|
|
iteration_count = range(iterations) if iterations else itertools.count(start=0, step=1)
|
|
for i in iteration_count:
|
|
results = generator.generate(
|
|
conditioning=conditioning,
|
|
step_callback=step_callback,
|
|
sampler=scheduler,
|
|
**generator_args,
|
|
)
|
|
output = InvokeAIGeneratorOutput(
|
|
image=results[0][0],
|
|
seed=results[0][1],
|
|
attention_maps_images=results[0][2],
|
|
model_hash = model_hash,
|
|
params=Namespace(model_name=model_name,**generator_args),
|
|
)
|
|
if callback:
|
|
callback(output)
|
|
yield output
|
|
|
|
@classmethod
|
|
def schedulers(self)->List[str]:
|
|
'''
|
|
Return list of all the schedulers that we currently handle.
|
|
'''
|
|
return list(SCHEDULER_MAP.keys())
|
|
|
|
def load_generator(self, model: StableDiffusionGeneratorPipeline, generator_class: Type[Generator]):
|
|
return generator_class(model, self.params.precision)
|
|
|
|
@classmethod
|
|
def _generator_class(cls)->Type[Generator]:
|
|
'''
|
|
In derived classes return the name of the generator to apply.
|
|
If you don't override will return the name of the derived
|
|
class, which nicely parallels the generator class names.
|
|
'''
|
|
return Generator
|
|
|
|
# ------------------------------------
|
|
class Img2Img(InvokeAIGenerator):
|
|
def generate(self,
|
|
init_image: Union[Image.Image, torch.FloatTensor],
|
|
strength: float=0.75,
|
|
**keyword_args
|
|
)->Iterator[InvokeAIGeneratorOutput]:
|
|
return super().generate(init_image=init_image,
|
|
strength=strength,
|
|
**keyword_args
|
|
)
|
|
@classmethod
|
|
def _generator_class(cls):
|
|
from .img2img import Img2Img
|
|
return Img2Img
|
|
|
|
# ------------------------------------
|
|
# Takes all the arguments of Img2Img and adds the mask image and the seam/infill stuff
|
|
class Inpaint(Img2Img):
|
|
def generate(self,
|
|
mask_image: Union[Image.Image, torch.FloatTensor],
|
|
# Seam settings - when 0, doesn't fill seam
|
|
seam_size: int = 96,
|
|
seam_blur: int = 16,
|
|
seam_strength: float = 0.7,
|
|
seam_steps: int = 30,
|
|
tile_size: int = 32,
|
|
inpaint_replace=False,
|
|
infill_method=None,
|
|
inpaint_width=None,
|
|
inpaint_height=None,
|
|
inpaint_fill: tuple(int) = (0x7F, 0x7F, 0x7F, 0xFF),
|
|
**keyword_args
|
|
)->Iterator[InvokeAIGeneratorOutput]:
|
|
return super().generate(
|
|
mask_image=mask_image,
|
|
seam_size=seam_size,
|
|
seam_blur=seam_blur,
|
|
seam_strength=seam_strength,
|
|
seam_steps=seam_steps,
|
|
tile_size=tile_size,
|
|
inpaint_replace=inpaint_replace,
|
|
infill_method=infill_method,
|
|
inpaint_width=inpaint_width,
|
|
inpaint_height=inpaint_height,
|
|
inpaint_fill=inpaint_fill,
|
|
**keyword_args
|
|
)
|
|
@classmethod
|
|
def _generator_class(cls):
|
|
from .inpaint import Inpaint
|
|
return Inpaint
|
|
|
|
class Generator:
|
|
downsampling_factor: int
|
|
latent_channels: int
|
|
precision: str
|
|
model: DiffusionPipeline
|
|
|
|
def __init__(self, model: DiffusionPipeline, precision: str, **kwargs):
|
|
self.model = model
|
|
self.precision = precision
|
|
self.seed = None
|
|
self.latent_channels = model.unet.config.in_channels
|
|
self.downsampling_factor = downsampling # BUG: should come from model or config
|
|
self.safety_checker = None
|
|
self.perlin = 0.0
|
|
self.threshold = 0
|
|
self.variation_amount = 0
|
|
self.with_variations = []
|
|
self.use_mps_noise = False
|
|
self.free_gpu_mem = None
|
|
|
|
# this is going to be overridden in img2img.py, txt2img.py and inpaint.py
|
|
def get_make_image(self, **kwargs):
|
|
"""
|
|
Returns a function returning an image derived from the prompt and the initial image
|
|
Return value depends on the seed at the time you call it
|
|
"""
|
|
raise NotImplementedError(
|
|
"image_iterator() must be implemented in a descendent class"
|
|
)
|
|
|
|
def set_variation(self, seed, variation_amount, with_variations):
|
|
self.seed = seed
|
|
self.variation_amount = variation_amount
|
|
self.with_variations = with_variations
|
|
|
|
def generate(
|
|
self,
|
|
width,
|
|
height,
|
|
sampler,
|
|
init_image=None,
|
|
iterations=1,
|
|
seed=None,
|
|
image_callback=None,
|
|
step_callback=None,
|
|
threshold=0.0,
|
|
perlin=0.0,
|
|
h_symmetry_time_pct=None,
|
|
v_symmetry_time_pct=None,
|
|
safety_checker: SafetyChecker=None,
|
|
free_gpu_mem: bool = False,
|
|
**kwargs,
|
|
):
|
|
scope = nullcontext
|
|
self.safety_checker = safety_checker
|
|
self.free_gpu_mem = free_gpu_mem
|
|
attention_maps_images = []
|
|
attention_maps_callback = lambda saver: attention_maps_images.append(
|
|
saver.get_stacked_maps_image()
|
|
)
|
|
make_image = self.get_make_image(
|
|
sampler=sampler,
|
|
init_image=init_image,
|
|
width=width,
|
|
height=height,
|
|
step_callback=step_callback,
|
|
threshold=threshold,
|
|
perlin=perlin,
|
|
h_symmetry_time_pct=h_symmetry_time_pct,
|
|
v_symmetry_time_pct=v_symmetry_time_pct,
|
|
attention_maps_callback=attention_maps_callback,
|
|
**kwargs,
|
|
)
|
|
results = []
|
|
seed = seed if seed is not None and seed >= 0 else self.new_seed()
|
|
first_seed = seed
|
|
seed, initial_noise = self.generate_initial_noise(seed, width, height)
|
|
|
|
# There used to be an additional self.model.ema_scope() here, but it breaks
|
|
# the inpaint-1.5 model. Not sure what it did.... ?
|
|
with scope(self.model.device.type):
|
|
for n in trange(iterations, desc="Generating"):
|
|
x_T = None
|
|
if self.variation_amount > 0:
|
|
set_seed(seed)
|
|
target_noise = self.get_noise(width, height)
|
|
x_T = self.slerp(self.variation_amount, initial_noise, target_noise)
|
|
elif initial_noise is not None:
|
|
# i.e. we specified particular variations
|
|
x_T = initial_noise
|
|
else:
|
|
set_seed(seed)
|
|
try:
|
|
x_T = self.get_noise(width, height)
|
|
except:
|
|
logger.error("An error occurred while getting initial noise")
|
|
print(traceback.format_exc())
|
|
|
|
# Pass on the seed in case a layer beneath us needs to generate noise on its own.
|
|
image = make_image(x_T, seed)
|
|
|
|
if self.safety_checker is not None:
|
|
image = self.safety_checker.check(image)
|
|
|
|
results.append([image, seed, attention_maps_images])
|
|
|
|
if image_callback is not None:
|
|
attention_maps_image = (
|
|
None
|
|
if len(attention_maps_images) == 0
|
|
else attention_maps_images[-1]
|
|
)
|
|
image_callback(
|
|
image,
|
|
seed,
|
|
first_seed=first_seed,
|
|
attention_maps_image=attention_maps_image,
|
|
)
|
|
|
|
seed = self.new_seed()
|
|
|
|
# Free up memory from the last generation.
|
|
clear_cuda_cache = (
|
|
kwargs["clear_cuda_cache"] if "clear_cuda_cache" in kwargs else None
|
|
)
|
|
if clear_cuda_cache is not None:
|
|
clear_cuda_cache()
|
|
|
|
return results
|
|
|
|
def sample_to_image(self, samples) -> Image.Image:
|
|
"""
|
|
Given samples returned from a sampler, converts
|
|
it into a PIL Image
|
|
"""
|
|
with torch.inference_mode():
|
|
image = self.model.decode_latents(samples)
|
|
return self.model.numpy_to_pil(image)[0]
|
|
|
|
def repaste_and_color_correct(
|
|
self,
|
|
result: Image.Image,
|
|
init_image: Image.Image,
|
|
init_mask: Image.Image,
|
|
mask_blur_radius: int = 8,
|
|
) -> Image.Image:
|
|
if init_image is None or init_mask is None:
|
|
return result
|
|
|
|
# Get the original alpha channel of the mask if there is one.
|
|
# Otherwise it is some other black/white image format ('1', 'L' or 'RGB')
|
|
pil_init_mask = (
|
|
init_mask.getchannel("A")
|
|
if init_mask.mode == "RGBA"
|
|
else init_mask.convert("L")
|
|
)
|
|
pil_init_image = init_image.convert(
|
|
"RGBA"
|
|
) # Add an alpha channel if one doesn't exist
|
|
|
|
# Build an image with only visible pixels from source to use as reference for color-matching.
|
|
init_rgb_pixels = np.asarray(init_image.convert("RGB"), dtype=np.uint8)
|
|
init_a_pixels = np.asarray(pil_init_image.getchannel("A"), dtype=np.uint8)
|
|
init_mask_pixels = np.asarray(pil_init_mask, dtype=np.uint8)
|
|
|
|
# Get numpy version of result
|
|
np_image = np.asarray(result, dtype=np.uint8)
|
|
|
|
# Mask and calculate mean and standard deviation
|
|
mask_pixels = init_a_pixels * init_mask_pixels > 0
|
|
np_init_rgb_pixels_masked = init_rgb_pixels[mask_pixels, :]
|
|
np_image_masked = np_image[mask_pixels, :]
|
|
|
|
if np_init_rgb_pixels_masked.size > 0:
|
|
init_means = np_init_rgb_pixels_masked.mean(axis=0)
|
|
init_std = np_init_rgb_pixels_masked.std(axis=0)
|
|
gen_means = np_image_masked.mean(axis=0)
|
|
gen_std = np_image_masked.std(axis=0)
|
|
|
|
# Color correct
|
|
np_matched_result = np_image.copy()
|
|
np_matched_result[:, :, :] = (
|
|
(
|
|
(
|
|
(
|
|
np_matched_result[:, :, :].astype(np.float32)
|
|
- gen_means[None, None, :]
|
|
)
|
|
/ gen_std[None, None, :]
|
|
)
|
|
* init_std[None, None, :]
|
|
+ init_means[None, None, :]
|
|
)
|
|
.clip(0, 255)
|
|
.astype(np.uint8)
|
|
)
|
|
matched_result = Image.fromarray(np_matched_result, mode="RGB")
|
|
else:
|
|
matched_result = Image.fromarray(np_image, mode="RGB")
|
|
|
|
# Blur the mask out (into init image) by specified amount
|
|
if mask_blur_radius > 0:
|
|
nm = np.asarray(pil_init_mask, dtype=np.uint8)
|
|
nmd = cv2.erode(
|
|
nm,
|
|
kernel=np.ones((3, 3), dtype=np.uint8),
|
|
iterations=int(mask_blur_radius / 2),
|
|
)
|
|
pmd = Image.fromarray(nmd, mode="L")
|
|
blurred_init_mask = pmd.filter(ImageFilter.BoxBlur(mask_blur_radius))
|
|
else:
|
|
blurred_init_mask = pil_init_mask
|
|
|
|
multiplied_blurred_init_mask = ImageChops.multiply(
|
|
blurred_init_mask, self.pil_image.split()[-1]
|
|
)
|
|
|
|
# Paste original on color-corrected generation (using blurred mask)
|
|
matched_result.paste(init_image, (0, 0), mask=multiplied_blurred_init_mask)
|
|
return matched_result
|
|
|
|
@staticmethod
|
|
def sample_to_lowres_estimated_image(samples):
|
|
# origingally adapted from code by @erucipe and @keturn here:
|
|
# https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/7
|
|
|
|
# these updated numbers for v1.5 are from @torridgristle
|
|
v1_5_latent_rgb_factors = torch.tensor(
|
|
[
|
|
# R G B
|
|
[0.3444, 0.1385, 0.0670], # L1
|
|
[0.1247, 0.4027, 0.1494], # L2
|
|
[-0.3192, 0.2513, 0.2103], # L3
|
|
[-0.1307, -0.1874, -0.7445], # L4
|
|
],
|
|
dtype=samples.dtype,
|
|
device=samples.device,
|
|
)
|
|
latent_image = samples[0].permute(1, 2, 0) @ v1_5_latent_rgb_factors
|
|
latents_ubyte = (
|
|
((latent_image + 1) / 2)
|
|
.clamp(0, 1) # change scale from -1..1 to 0..1
|
|
.mul(0xFF) # to 0..255
|
|
.byte()
|
|
).cpu()
|
|
|
|
return Image.fromarray(latents_ubyte.numpy())
|
|
|
|
def generate_initial_noise(self, seed, width, height):
|
|
initial_noise = None
|
|
if self.variation_amount > 0 or len(self.with_variations) > 0:
|
|
# use fixed initial noise plus random noise per iteration
|
|
set_seed(seed)
|
|
initial_noise = self.get_noise(width, height)
|
|
for v_seed, v_weight in self.with_variations:
|
|
seed = v_seed
|
|
set_seed(seed)
|
|
next_noise = self.get_noise(width, height)
|
|
initial_noise = self.slerp(v_weight, initial_noise, next_noise)
|
|
if self.variation_amount > 0:
|
|
random.seed() # reset RNG to an actually random state, so we can get a random seed for variations
|
|
seed = random.randrange(0, np.iinfo(np.uint32).max)
|
|
return (seed, initial_noise)
|
|
|
|
def get_perlin_noise(self, width, height):
|
|
fixdevice = "cpu" if (self.model.device.type == "mps") else self.model.device
|
|
# limit noise to only the diffusion image channels, not the mask channels
|
|
input_channels = min(self.latent_channels, 4)
|
|
# round up to the nearest block of 8
|
|
temp_width = int((width + 7) / 8) * 8
|
|
temp_height = int((height + 7) / 8) * 8
|
|
noise = torch.stack(
|
|
[
|
|
rand_perlin_2d(
|
|
(temp_height, temp_width), (8, 8), device=self.model.device
|
|
).to(fixdevice)
|
|
for _ in range(input_channels)
|
|
],
|
|
dim=0,
|
|
).to(self.model.device)
|
|
return noise[0:4, 0:height, 0:width]
|
|
|
|
def new_seed(self):
|
|
self.seed = random.randrange(0, np.iinfo(np.uint32).max)
|
|
return self.seed
|
|
|
|
def slerp(self, t, v0, v1, DOT_THRESHOLD=0.9995):
|
|
"""
|
|
Spherical linear interpolation
|
|
Args:
|
|
t (float/np.ndarray): Float value between 0.0 and 1.0
|
|
v0 (np.ndarray): Starting vector
|
|
v1 (np.ndarray): Final vector
|
|
DOT_THRESHOLD (float): Threshold for considering the two vectors as
|
|
colineal. Not recommended to alter this.
|
|
Returns:
|
|
v2 (np.ndarray): Interpolation vector between v0 and v1
|
|
"""
|
|
inputs_are_torch = False
|
|
if not isinstance(v0, np.ndarray):
|
|
inputs_are_torch = True
|
|
v0 = v0.detach().cpu().numpy()
|
|
if not isinstance(v1, np.ndarray):
|
|
inputs_are_torch = True
|
|
v1 = v1.detach().cpu().numpy()
|
|
|
|
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
|
if np.abs(dot) > DOT_THRESHOLD:
|
|
v2 = (1 - t) * v0 + t * v1
|
|
else:
|
|
theta_0 = np.arccos(dot)
|
|
sin_theta_0 = np.sin(theta_0)
|
|
theta_t = theta_0 * t
|
|
sin_theta_t = np.sin(theta_t)
|
|
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
|
s1 = sin_theta_t / sin_theta_0
|
|
v2 = s0 * v0 + s1 * v1
|
|
|
|
if inputs_are_torch:
|
|
v2 = torch.from_numpy(v2).to(self.model.device)
|
|
|
|
return v2
|
|
|
|
# this is a handy routine for debugging use. Given a generated sample,
|
|
# convert it into a PNG image and store it at the indicated path
|
|
def save_sample(self, sample, filepath):
|
|
image = self.sample_to_image(sample)
|
|
dirname = os.path.dirname(filepath) or "."
|
|
if not os.path.exists(dirname):
|
|
logger.info(f"creating directory {dirname}")
|
|
os.makedirs(dirname, exist_ok=True)
|
|
image.save(filepath, "PNG")
|
|
|
|
def torch_dtype(self) -> torch.dtype:
|
|
return torch.float16 if self.precision == "float16" else torch.float32
|
|
|
|
# returns a tensor filled with random numbers from a normal distribution
|
|
def get_noise(self, width, height):
|
|
device = self.model.device
|
|
# limit noise to only the diffusion image channels, not the mask channels
|
|
input_channels = min(self.latent_channels, 4)
|
|
x = torch.randn(
|
|
[
|
|
1,
|
|
input_channels,
|
|
height // self.downsampling_factor,
|
|
width // self.downsampling_factor,
|
|
],
|
|
dtype=self.torch_dtype(),
|
|
device=device,
|
|
)
|
|
if self.perlin > 0.0:
|
|
perlin_noise = self.get_perlin_noise(
|
|
width // self.downsampling_factor, height // self.downsampling_factor
|
|
)
|
|
x = (1 - self.perlin) * x + self.perlin * perlin_noise
|
|
return x
|