InvokeAI/invokeai/backend/model_manager/config.py
2023-11-06 18:08:57 -05:00

329 lines
9.7 KiB
Python

# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
"""
Configuration definitions for image generation models.
Typical usage:
from invokeai.backend.model_manager import ModelConfigFactory
raw = dict(path='models/sd-1/main/foo.ckpt',
name='foo',
base='sd-1',
type='main',
config='configs/stable-diffusion/v1-inference.yaml',
variant='normal',
format='checkpoint'
)
config = ModelConfigFactory.make_config(raw)
print(config.name)
Validation errors will raise an InvalidModelConfigException error.
"""
from enum import Enum
from typing import Literal, Optional, Type, Union
from pydantic import BaseModel, ConfigDict, Field, ValidationError
class InvalidModelConfigException(Exception):
"""Exception for when config parser doesn't recognized this combination of model type and format."""
class BaseModelType(str, Enum):
"""Base model type."""
Any = "any"
StableDiffusion1 = "sd-1"
StableDiffusion2 = "sd-2"
StableDiffusionXL = "sdxl"
StableDiffusionXLRefiner = "sdxl-refiner"
# Kandinsky2_1 = "kandinsky-2.1"
class ModelType(str, Enum):
"""Model type."""
ONNX = "onnx"
Main = "main"
Vae = "vae"
Lora = "lora"
ControlNet = "controlnet" # used by model_probe
TextualInversion = "embedding"
IPAdapter = "ip_adapter"
CLIPVision = "clip_vision"
T2IAdapter = "t2i_adapter"
class SubModelType(str, Enum):
"""Submodel type."""
UNet = "unet"
TextEncoder = "text_encoder"
TextEncoder2 = "text_encoder_2"
Tokenizer = "tokenizer"
Tokenizer2 = "tokenizer_2"
Vae = "vae"
VaeDecoder = "vae_decoder"
VaeEncoder = "vae_encoder"
Scheduler = "scheduler"
SafetyChecker = "safety_checker"
class ModelVariantType(str, Enum):
"""Variant type."""
Normal = "normal"
Inpaint = "inpaint"
Depth = "depth"
class ModelFormat(str, Enum):
"""Storage format of model."""
Diffusers = "diffusers"
Checkpoint = "checkpoint"
Lycoris = "lycoris"
Onnx = "onnx"
Olive = "olive"
EmbeddingFile = "embedding_file"
EmbeddingFolder = "embedding_folder"
InvokeAI = "invokeai"
class SchedulerPredictionType(str, Enum):
"""Scheduler prediction type."""
Epsilon = "epsilon"
VPrediction = "v_prediction"
Sample = "sample"
class ModelConfigBase(BaseModel):
"""Base class for model configuration information."""
path: str
name: str
base: BaseModelType
type: ModelType
format: ModelFormat
key: str = Field(description="unique key for model", default="<NOKEY>")
original_hash: Optional[str] = Field(
description="original fasthash of model contents", default=None
) # this is assigned at install time and will not change
current_hash: Optional[str] = Field(
description="current fasthash of model contents", default=None
) # if model is converted or otherwise modified, this will hold updated hash
description: Optional[str] = Field(None)
source: Optional[str] = Field(description="Model download source (URL or repo_id)", default=None)
model_config = ConfigDict(
use_enum_values=False,
validate_assignment=True,
)
def update(self, attributes: dict):
"""Update the object with fields in dict."""
for key, value in attributes.items():
setattr(self, key, value) # may raise a validation error
class CheckpointConfig(ModelConfigBase):
"""Model config for checkpoint-style models."""
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
config: str = Field(description="path to the checkpoint model config file")
class DiffusersConfig(ModelConfigBase):
"""Model config for diffusers-style models."""
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
class LoRAConfig(ModelConfigBase):
"""Model config for LoRA/Lycoris models."""
format: Literal[ModelFormat.Lycoris, ModelFormat.Diffusers]
class VaeCheckpointConfig(ModelConfigBase):
"""Model config for standalone VAE models."""
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
class VaeDiffusersConfig(ModelConfigBase):
"""Model config for standalone VAE models (diffusers version)."""
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
class ControlNetDiffusersConfig(DiffusersConfig):
"""Model config for ControlNet models (diffusers version)."""
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
class ControlNetCheckpointConfig(CheckpointConfig):
"""Model config for ControlNet models (diffusers version)."""
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
class TextualInversionConfig(ModelConfigBase):
"""Model config for textual inversion embeddings."""
format: Literal[ModelFormat.EmbeddingFile, ModelFormat.EmbeddingFolder]
class MainConfig(ModelConfigBase):
"""Model config for main models."""
vae: Optional[str] = Field(None)
variant: ModelVariantType = ModelVariantType.Normal
ztsnr_training: bool = False
class MainCheckpointConfig(CheckpointConfig, MainConfig):
"""Model config for main checkpoint models."""
# Note that we do not need prediction_type or upcast_attention here
# because they are provided in the checkpoint's own config file.
class MainDiffusersConfig(DiffusersConfig, MainConfig):
"""Model config for main diffusers models."""
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon
upcast_attention: bool = False
class ONNXSD1Config(MainConfig):
"""Model config for ONNX format models based on sd-1."""
format: Literal[ModelFormat.Onnx, ModelFormat.Olive]
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon
upcast_attention: bool = False
class ONNXSD2Config(MainConfig):
"""Model config for ONNX format models based on sd-2."""
format: Literal[ModelFormat.Onnx, ModelFormat.Olive]
# No yaml config file for ONNX, so these are part of config
prediction_type: SchedulerPredictionType = SchedulerPredictionType.VPrediction
upcast_attention: bool = True
class IPAdapterConfig(ModelConfigBase):
"""Model config for IP Adaptor format models."""
format: Literal[ModelFormat.InvokeAI]
class CLIPVisionDiffusersConfig(ModelConfigBase):
"""Model config for ClipVision."""
format: Literal[ModelFormat.Diffusers]
class T2IConfig(ModelConfigBase):
"""Model config for T2I."""
format: Literal[ModelFormat.Diffusers]
AnyModelConfig = Union[
MainCheckpointConfig,
MainDiffusersConfig,
LoRAConfig,
TextualInversionConfig,
ONNXSD1Config,
ONNXSD2Config,
VaeCheckpointConfig,
VaeDiffusersConfig,
ControlNetDiffusersConfig,
ControlNetCheckpointConfig,
IPAdapterConfig,
CLIPVisionDiffusersConfig,
T2IConfig,
]
class ModelConfigFactory(object):
"""Class for parsing config dicts into StableDiffusion Config obects."""
_class_map: dict = {
ModelFormat.Checkpoint: {
ModelType.Main: MainCheckpointConfig,
ModelType.Vae: VaeCheckpointConfig,
},
ModelFormat.Diffusers: {
ModelType.Main: MainDiffusersConfig,
ModelType.Lora: LoRAConfig,
ModelType.Vae: VaeDiffusersConfig,
ModelType.ControlNet: ControlNetDiffusersConfig,
ModelType.CLIPVision: CLIPVisionDiffusersConfig,
},
ModelFormat.Lycoris: {
ModelType.Lora: LoRAConfig,
},
ModelFormat.Onnx: {
ModelType.ONNX: {
BaseModelType.StableDiffusion1: ONNXSD1Config,
BaseModelType.StableDiffusion2: ONNXSD2Config,
},
},
ModelFormat.Olive: {
ModelType.ONNX: {
BaseModelType.StableDiffusion1: ONNXSD1Config,
BaseModelType.StableDiffusion2: ONNXSD2Config,
},
},
ModelFormat.EmbeddingFile: {
ModelType.TextualInversion: TextualInversionConfig,
},
ModelFormat.EmbeddingFolder: {
ModelType.TextualInversion: TextualInversionConfig,
},
ModelFormat.InvokeAI: {
ModelType.IPAdapter: IPAdapterConfig,
},
}
@classmethod
def make_config(
cls,
model_data: Union[dict, ModelConfigBase],
key: Optional[str] = None,
dest_class: Optional[Type] = None,
) -> AnyModelConfig:
"""
Return the appropriate config object from raw dict values.
:param model_data: A raw dict corresponding the obect fields to be
parsed into a ModelConfigBase obect (or descendent), or a ModelConfigBase
object, which will be passed through unchanged.
:param dest_class: The config class to be returned. If not provided, will
be selected automatically.
"""
if isinstance(model_data, ModelConfigBase):
if key:
model_data.key = key
return model_data
try:
format = model_data.get("format")
type = model_data.get("type")
model_base = model_data.get("base")
class_to_return = dest_class or cls._class_map[format][type]
if isinstance(class_to_return, dict): # additional level allowed
class_to_return = class_to_return[model_base]
model = class_to_return.model_validate(model_data)
if key:
model.key = key # ensure consistency
return model
except KeyError as exc:
raise InvalidModelConfigException(f"Unknown combination of format '{format}' and type '{type}'") from exc
except ValidationError as exc:
raise InvalidModelConfigException(f"Invalid model configuration passed: {str(exc)}") from exc