InvokeAI/invokeai/app/invocations/flux_text_to_image.py
2024-08-26 20:17:50 -04:00

175 lines
6.9 KiB
Python

import torch
from einops import rearrange, repeat
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import (
ConditioningField,
FieldDescriptions,
Input,
InputField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import TransformerField, VAEField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.model import Flux
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
from invokeai.backend.flux.sampling import denoise, get_noise, get_schedule, unpack
from invokeai.backend.model_manager.config import CheckpointConfigBase
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo
from invokeai.backend.util.devices import TorchDevice
@invocation(
"flux_text_to_image",
title="FLUX Text to Image",
tags=["image", "flux"],
category="image",
version="1.0.0",
)
class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Text-to-image generation using a FLUX model."""
transformer: TransformerField = InputField(
description=FieldDescriptions.flux_model,
input=Input.Connection,
title="Transformer",
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
positive_text_conditioning: ConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
width: int = InputField(default=1024, multiple_of=16, description="Width of the generated image.")
height: int = InputField(default=1024, multiple_of=16, description="Height of the generated image.")
num_steps: int = InputField(
default=4, description="Number of diffusion steps. Recommend values are schnell: 4, dev: 50."
)
guidance: float = InputField(
default=4.0,
description="The guidance strength. Higher values adhere more strictly to the prompt, and will produce less diverse images. FLUX dev only, ignored for schnell.",
)
seed: int = InputField(default=0, description="Randomness seed for reproducibility.")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
# Load the conditioning data.
cond_data = context.conditioning.load(self.positive_text_conditioning.conditioning_name)
assert len(cond_data.conditionings) == 1
flux_conditioning = cond_data.conditionings[0]
assert isinstance(flux_conditioning, FLUXConditioningInfo)
latents = self._run_diffusion(context, flux_conditioning.clip_embeds, flux_conditioning.t5_embeds)
image = self._run_vae_decoding(context, latents)
image_dto = context.images.save(image=image)
return ImageOutput.build(image_dto)
def _run_diffusion(
self,
context: InvocationContext,
clip_embeddings: torch.Tensor,
t5_embeddings: torch.Tensor,
):
transformer_info = context.models.load(self.transformer.transformer)
inference_dtype = torch.bfloat16
# Prepare input noise.
# TODO(ryand): Does the seed behave the same on different devices? Should we re-implement this to always use a
# CPU RNG?
x = get_noise(
num_samples=1,
height=self.height,
width=self.width,
device=TorchDevice.choose_torch_device(),
dtype=inference_dtype,
seed=self.seed,
)
img, img_ids = self._prepare_latent_img_patches(x)
# HACK(ryand): Find a better way to determine if this is a schnell model or not.
is_schnell = (
"schnell" in transformer_info.config.config_path
if transformer_info.config and isinstance(transformer_info.config, CheckpointConfigBase)
else ""
)
timesteps = get_schedule(
num_steps=self.num_steps,
image_seq_len=img.shape[1],
shift=not is_schnell,
)
bs, t5_seq_len, _ = t5_embeddings.shape
txt_ids = torch.zeros(bs, t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device())
# HACK(ryand): Manually empty the cache. Currently we don't check the size of the model before loading it from
# disk. Since the transformer model is large (24GB), there's a good chance that it will OOM on 32GB RAM systems
# if the cache is not empty.
context.models._services.model_manager.load.ram_cache.make_room(24 * 2**30)
with transformer_info as transformer:
assert isinstance(transformer, Flux)
x = denoise(
model=transformer,
img=img,
img_ids=img_ids,
txt=t5_embeddings,
txt_ids=txt_ids,
vec=clip_embeddings,
timesteps=timesteps,
guidance=self.guidance,
)
x = unpack(x.float(), self.height, self.width)
return x
def _prepare_latent_img_patches(self, latent_img: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
"""Convert an input image in latent space to patches for diffusion.
This implementation was extracted from:
https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/sampling.py#L32
Returns:
tuple[Tensor, Tensor]: (img, img_ids), as defined in the original flux repo.
"""
bs, c, h, w = latent_img.shape
# Pixel unshuffle with a scale of 2, and flatten the height/width dimensions to get an array of patches.
img = rearrange(latent_img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img.shape[0] == 1 and bs > 1:
img = repeat(img, "1 ... -> bs ...", bs=bs)
# Generate patch position ids.
img_ids = torch.zeros(h // 2, w // 2, 3, device=img.device)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2, device=img.device)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2, device=img.device)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
return img, img_ids
def _run_vae_decoding(
self,
context: InvocationContext,
latents: torch.Tensor,
) -> Image.Image:
vae_info = context.models.load(self.vae.vae)
with vae_info as vae:
assert isinstance(vae, AutoEncoder)
# TODO(ryand): Test that this works with both float16 and bfloat16.
# with torch.autocast(device_type=latents.device.type, dtype=torch.float32):
vae.to(torch.float32)
latents.to(torch.float32)
img = vae.decode(latents)
img = img.clamp(-1, 1)
img = rearrange(img[0], "c h w -> h w c")
img_pil = Image.fromarray((127.5 * (img + 1.0)).byte().cpu().numpy())
return img_pil