mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
aa089e8108
Unfortunately, this is necessary to prevent circular imports at runtime.
105 lines
4.0 KiB
Python
105 lines
4.0 KiB
Python
from typing import Union
|
|
|
|
from pydantic import BaseModel, ConfigDict, Field, field_validator, model_validator
|
|
|
|
from invokeai.app.invocations.baseinvocation import (
|
|
BaseInvocation,
|
|
BaseInvocationOutput,
|
|
InvocationContext,
|
|
invocation,
|
|
invocation_output,
|
|
)
|
|
from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_RESIZE_VALUES
|
|
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField
|
|
from invokeai.app.invocations.primitives import ImageField
|
|
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
|
|
from invokeai.backend.model_management.models.base import BaseModelType
|
|
|
|
|
|
class T2IAdapterModelField(BaseModel):
|
|
model_name: str = Field(description="Name of the T2I-Adapter model")
|
|
base_model: BaseModelType = Field(description="Base model")
|
|
|
|
model_config = ConfigDict(protected_namespaces=())
|
|
|
|
|
|
class T2IAdapterField(BaseModel):
|
|
image: ImageField = Field(description="The T2I-Adapter image prompt.")
|
|
t2i_adapter_model: T2IAdapterModelField = Field(description="The T2I-Adapter model to use.")
|
|
weight: Union[float, list[float]] = Field(default=1, description="The weight given to the T2I-Adapter")
|
|
begin_step_percent: float = Field(
|
|
default=0, ge=0, le=1, description="When the T2I-Adapter is first applied (% of total steps)"
|
|
)
|
|
end_step_percent: float = Field(
|
|
default=1, ge=0, le=1, description="When the T2I-Adapter is last applied (% of total steps)"
|
|
)
|
|
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
|
|
|
|
@field_validator("weight")
|
|
@classmethod
|
|
def validate_ip_adapter_weight(cls, v):
|
|
validate_weights(v)
|
|
return v
|
|
|
|
@model_validator(mode="after")
|
|
def validate_begin_end_step_percent(self):
|
|
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
|
|
return self
|
|
|
|
|
|
@invocation_output("t2i_adapter_output")
|
|
class T2IAdapterOutput(BaseInvocationOutput):
|
|
t2i_adapter: T2IAdapterField = OutputField(description=FieldDescriptions.t2i_adapter, title="T2I Adapter")
|
|
|
|
|
|
@invocation(
|
|
"t2i_adapter", title="T2I-Adapter", tags=["t2i_adapter", "control"], category="t2i_adapter", version="1.0.1"
|
|
)
|
|
class T2IAdapterInvocation(BaseInvocation):
|
|
"""Collects T2I-Adapter info to pass to other nodes."""
|
|
|
|
# Inputs
|
|
image: ImageField = InputField(description="The IP-Adapter image prompt.")
|
|
t2i_adapter_model: T2IAdapterModelField = InputField(
|
|
description="The T2I-Adapter model.",
|
|
title="T2I-Adapter Model",
|
|
input=Input.Direct,
|
|
ui_order=-1,
|
|
)
|
|
weight: Union[float, list[float]] = InputField(
|
|
default=1, ge=0, description="The weight given to the T2I-Adapter", title="Weight"
|
|
)
|
|
begin_step_percent: float = InputField(
|
|
default=0, ge=0, le=1, description="When the T2I-Adapter is first applied (% of total steps)"
|
|
)
|
|
end_step_percent: float = InputField(
|
|
default=1, ge=0, le=1, description="When the T2I-Adapter is last applied (% of total steps)"
|
|
)
|
|
resize_mode: CONTROLNET_RESIZE_VALUES = InputField(
|
|
default="just_resize",
|
|
description="The resize mode applied to the T2I-Adapter input image so that it matches the target output size.",
|
|
)
|
|
|
|
@field_validator("weight")
|
|
@classmethod
|
|
def validate_ip_adapter_weight(cls, v):
|
|
validate_weights(v)
|
|
return v
|
|
|
|
@model_validator(mode="after")
|
|
def validate_begin_end_step_percent(self):
|
|
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
|
|
return self
|
|
|
|
def invoke(self, context: InvocationContext) -> T2IAdapterOutput:
|
|
return T2IAdapterOutput(
|
|
t2i_adapter=T2IAdapterField(
|
|
image=self.image,
|
|
t2i_adapter_model=self.t2i_adapter_model,
|
|
weight=self.weight,
|
|
begin_step_percent=self.begin_step_percent,
|
|
end_step_percent=self.end_step_percent,
|
|
resize_mode=self.resize_mode,
|
|
)
|
|
)
|