InvokeAI/ldm/models/diffusion/ddpm.py
Kevin Turner 6fdbc1978d
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class

* spike: proof of concept using diffusers for txt2img

* doc: type hints for Generator

* refactor(model_cache): factor out load_ckpt

* model_cache: add ability to load a diffusers model pipeline

and update associated things in Generate & Generator to not instantly fail when that happens

* model_cache: fix model default image dimensions

* txt2img: support switching diffusers schedulers

* diffusers: let the scheduler do its scaling of the initial latents

Remove IPNDM scheduler; it is not behaving.

* web server: update image_progress callback for diffusers data

* diffusers: restore prompt weighting feature

* diffusers: fix set-sampler error following model switch

* diffusers: use InvokeAIDiffuserComponent for conditioning

* cross_attention_control: stub (no-op) implementations for diffusers

* model_cache: let offload_model work with DiffusionPipeline, sorta.

* models.yaml.example: add diffusers-format model, set as default

* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it

* environment-mac: upgrade to diffusers 0.7 (from 0.6)

this was already done for linux; mac must have been lost in the merge.

* preload_models: explicitly load diffusers models

In non-interactive mode too, as long as you're logged in.

* fix(model_cache): don't check `model.config` in diffusers format

clean-up from recent merge.

* diffusers integration: support img2img

* dev: upgrade to diffusers 0.8 (from 0.7.1)

We get to remove some code by using methods that were factored out in the base class.

* refactor: remove backported img2img.get_timesteps

now that we can use it directly from diffusers 0.8.1

* ci: use diffusers model

* dev: upgrade to diffusers 0.9 (from 0.8.1)

* lint: correct annotations for Python 3.9.

* lint: correct AttributeError.name reference for Python 3.9.

* CI: prefer diffusers-1.4 because it no longer requires a token

The RunwayML models still do.

* build: there's yet another place to update requirements?

* configure: try to download models even without token

Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)

* configure: add troubleshooting info for config-not-found

* fix(configure): prepend root to config path

* fix(configure): remove second `default: true` from models example

* CI: simplify test-on-push logic now that we don't need secrets

The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.

* create an embedding_manager for diffusers

* internal: avoid importing diffusers DummyObject

see https://github.com/huggingface/diffusers/issues/1479

* fix "config attributes…not expected" diffusers warnings.

* fix deprecated scheduler construction

* work around an apparent MPS torch bug that causes conditioning to have no effect

* 🚧 post-rebase repair

* preliminary support for outpainting (no masking yet)

* monkey-patch diffusers.attention and use Invoke lowvram code

* add always_use_cpu arg to bypass MPS

* add cross-attention control support to diffusers (fails on MPS)

For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.

* diffusers support for the inpainting model

* fix debug_image to not crash with non-RGB images.

* inpainting for the normal model [WIP]

This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.

* fix off-by-one bug in cross-attention-control (#1774)

prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).

based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.

* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary

* inpainting for the normal model. I think it works this time.

* diffusers: reset num_vectors_per_token

sync with 44a0055571

* diffusers: txt2img2img (hires_fix)

with so much slicing and dicing of pipeline methods to stitch them together

* refactor(diffusers): reduce some code duplication amongst the different tasks

* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks

* diffusers: enable DPMSolver++ scheduler

* diffusers: upgrade to diffusers 0.10, add Heun scheduler

* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers

* CI: default to diffusers-1.5 now that runwayml token requirement is gone

* diffusers: update to 0.10 (and transformers to 4.25)

* diffusers: use xformers when available

diffusers no longer auto-enables this as of 0.10.2.

* diffusers: make masked img2img behave better with multi-step schedulers

re-randomizing the noise each step was confusing them.

* diffusers: work more better with more models.

fixed relative path problem with local models.

fixed models on hub not always having a `fp16` branch.

* diffusers: stopgap fix for attention_maps_callback crash after recent merge

* fixup import merge conflicts

correction for 061c5369a2

* test: add tests/inpainting inputs for masked img2img

* diffusers(AddsMaskedGuidance): partial fix for k-schedulers

Prevents them from crashing, but results are still hot garbage.

* fix --safety_checker arg parsing

and add note to diffusers loader about where safety checker gets called

* generate: fix import error

* CI: don't try to read the old init location

* diffusers: support loading an alternate VAE

* CI: remove sh-syntax if-statement so it doesn't crash powershell

* CI: fold strings in yaml because backslash is not line-continuation in powershell

* attention maps callback stuff for diffusers

* build: fix syntax error in environment-mac

* diffusers: add INITIAL_MODELS with diffusers-compatible repos

* re-enable the embedding manager; closes #1778

* Squashed commit of the following:

commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 15:43:07 2022 +0100

    import new load handling from EmbeddingManager and cleanup

commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 15:09:53 2022 +0100

    Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager

commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 15:08:01 2022 +0100

    Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager

commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 15:04:28 2022 +0100

    cleanup and add performance notes

commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 14:45:07 2022 +0100

    fix bug and update unit tests

commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 14:28:29 2022 +0100

    textual inversion manager seems to work

commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 11:58:03 2022 +0100

    Merge branch 'main' into feature_textual_inversion_mgr

commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 11:54:10 2022 +0100

    use position embeddings

commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 11:53:47 2022 +0100

    Don't crash CLI on exceptions

commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 11:11:55 2022 +0100

    add missing position_embeddings

commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date:   Fri Dec 16 13:33:25 2022 +0100

    debugging why it don't work

commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date:   Fri Dec 16 13:21:33 2022 +0100

    debugging why it don't work

commit 664a6e9e14
Author: Damian Stewart <d@damianstewart.com>
Date:   Fri Dec 16 12:48:38 2022 +0100

    use TextualInversionManager in place of embeddings (wip, doesn't work)

commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date:   Fri Dec 16 12:48:38 2022 +0100

    use TextualInversionManager in place of embeddings (wip, doesn't work)

commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date:   Fri Dec 16 02:37:31 2022 +0100

    Merge branch 'feature_textual_inversion_mgr' into dev/diffusers

commit 023df37eff
Author: Damian Stewart <d@damianstewart.com>
Date:   Fri Dec 16 02:36:54 2022 +0100

    cleanup

commit 05fac594ea
Author: Damian Stewart <d@damianstewart.com>
Date:   Fri Dec 16 02:07:49 2022 +0100

    tweak error checking

commit 009f32ed39
Author: damian <null@damianstewart.com>
Date:   Thu Dec 15 21:29:47 2022 +0100

    unit tests passing for embeddings with vector length >1

commit beb1b08d9a
Author: Damian Stewart <d@damianstewart.com>
Date:   Thu Dec 15 13:39:09 2022 +0100

    more explicit equality tests when overwriting

commit 44d8a5a7c8
Author: Damian Stewart <d@damianstewart.com>
Date:   Thu Dec 15 13:30:13 2022 +0100

    wip textual inversion manager (unit tests passing for 1v embedding overwriting)

commit 417c2b57d9
Author: Damian Stewart <d@damianstewart.com>
Date:   Thu Dec 15 12:30:55 2022 +0100

    wip textual inversion manager (unit tests passing for base stuff + padding)

commit 2e80872e3b
Author: Damian Stewart <d@damianstewart.com>
Date:   Thu Dec 15 10:57:57 2022 +0100

    wip new TextualInversionManager

* stop using WeightedFrozenCLIPEmbedder

* store diffusion models locally

- configure_invokeai.py reconfigured to store diffusion models rather than
  CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.

* allow non-local files during development

* path takes priority over repo_id

* MVP for model_cache and configure_invokeai

- Feature complete (almost)

- configure_invokeai.py downloads both .ckpt and diffuser models,
  along with their VAEs. Both types of download are controlled by
  a unified INITIAL_MODELS.yaml file.

- model_cache can load both type of model and switches back and forth
  in CPU. No memory leaks detected

TO DO:

  1. I have not yet turned on the LocalOnly flag for diffuser models, so
     the code will check the Hugging Face repo for updates before using the
     locally cached models. This will break firewalled systems. I am thinking
     of putting in a global check for internet connectivity at startup time
     and setting the LocalOnly flag based on this. It would be good to check
     updates if there is connectivity.

  2. I have not gone completely through INITIAL_MODELS.yaml to check which
     models are available as diffusers and which are not. So models like
     PaperCut and VoxelArt may not load properly. The runway and stability
     models are checked, as well as the Trinart models.

  3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml

REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:

  1. When loading a .ckpt file there are lots of messages like this:

     Warning! ldm.modules.attention.CrossAttention is no longer being
     maintained. Please use InvokeAICrossAttention instead.

     I'm not sure how to address this.

  2. The ckpt models ***don't actually run*** due to the lack of special-case
     support for them in the generator objects. For example, here's the hard
     crash you get when you run txt2img against the legacy waifu-diffusion-1.3
     model:
```
     >> An error occurred:
     Traceback (most recent call last):
       File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
           main_loop(gen, opt)
      File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
         gen.prompt2image(
      File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
	 results = generator.generate(
      File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
         image = make_image(x_T)
      File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
         pipeline_output = pipeline.image_from_embeddings(
      File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
         raise AttributeError("'{}' object has no attribute '{}'".format(
     AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```

  3. The inpainting diffusion model isn't working. Here's the output of "banana
     sushi" when inpainting-1.5 is loaded:

```
    Traceback (most recent call last):
      File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
        results = generator.generate(
      File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
        image = make_image(x_T)
      File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
        pipeline_output = pipeline.image_from_embeddings(
      File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
        result_latents, result_attention_map_saver = self.latents_from_embeddings(
      File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
        result: PipelineIntermediateState = infer_latents_from_embeddings(
      File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
        for result in self.generator_method(*args, **kwargs):
      File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
        step_output = self.step(batched_t, latents, guidance_scale,
      File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
        return func(*args, **kwargs)
      File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
        step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
      File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
        pred_original_sample = sample - sigma * model_output
    RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```

* proper support for float32/float16

- configure script now correctly detects user's preference for
  fp16/32 and downloads the correct diffuser version. If fp16
  version not available, falls back to fp32 version.

- misc code cleanup and simplification in model_cache

* add on-the-fly conversion of .ckpt to diffusers models

1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.

2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.

User experience on the CLI is this:

```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
      This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...

>> New configuration:
sd-v1-4:
  description: Optimized version of sd-v1-4
  format: diffusers
  path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4

OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage:  2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
  | Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
 disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
  | training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```

* add parallel set of generator files for ckpt legacy generation

* generation using legacy ckpt models now working

* diffusers: fix missing attention_maps_callback

fix for 23eb80b404

* associate legacy CrossAttention with .ckpt models

* enable autoconvert

New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.

Works like this:

   invoke.py --autoconvert /path/to/weights/directory

In ModelCache added two new methods:

  autoconvert_weights(config_path, weights_directory_path, models_directory_path)
  convert_and_import(ckpt_path, diffuser_path)

* diffusers: update to diffusers 0.11 (from 0.10.2)

* fix vae loading & width/height calculation

* refactor: encapsulate these conditioning data into one container

* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function

* add support for safetensors and accelerate

* set local_files_only when internet unreachable

* diffusers: fix error-handling path when model repo has no fp16 branch

* fix generatorinpaint error

Fixes :
  "ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
   https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318

* quench diffuser safety-checker warning

* diffusers: support stochastic DDIM eta parameter

* fix conda env creation on macos

* fix cross-attention with diffusers 0.11

* diffusers: the VAE needs to be tiling as well as the U-Net

* diffusers: comment on subfolders

* diffusers: embiggen!

* diffusers: make model_cache.list_models serializable

* diffusers(inpaint): restore scaling functionality

* fix requirements clash between numba and numpy 1.24

* diffusers: allow inpainting model to do non-inpainting tasks

* start expanding model_cache functionality

* add import_ckpt_model() and import_diffuser_model() methods to model_manager

- in addition, model_cache.py is now renamed to model_manager.py

* allow "recommended" flag to be optional in INITIAL_MODELS.yaml

* configure_invokeai now downloads VAE diffusers in advance

* rename ModelCache to ModelManager

* remove support for `repo_name` in models.yaml

* check for and refuse to load embeddings trained on incompatible models

* models.yaml.example: s/repo_name/repo_id

and remove extra INITIAL_MODELS now that the main one has diffusers models in it.

* add MVP textual inversion script

* refactor(InvokeAIDiffuserComponent): factor out _combine()

* InvokeAIDiffuserComponent: implement threshold

* InvokeAIDiffuserComponent: diagnostic logs for threshold

...this does not look right

* add a curses-based frontend to textual inversion

- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
  to requirements yet

* add curses-based interface for textual inversion

* fix crash in convert_and_import()

- This corrects a "local variable referenced before assignment" error
  in model_manager.convert_and_import()

* potential workaround for no 'state_dict' key error

- As reported in https://github.com/huggingface/diffusers/issues/1876

* create TI output dir if needed

* Update environment-lin-cuda.yml (#2159)

Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~

* diffusers: update sampler-to-scheduler mapping

based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672

* improve user exp for ckt to diffusers conversion

- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion

* web: adapt progress callback to deal with old generator or new diffusers pipeline

* clean-up model_manager code

- add_model() verified to work for .ckpt local paths,
  .ckpt remote URLs, diffusers local paths, and
  diffusers repo_ids

- convert_and_import() verified to work for local and
  remove .ckpt files

* handle edge cases for import_model() and convert_model()

* add support for safetensor .ckpt files

* fix name error

* code cleanup with pyflake

* improve model setting behavior

- If the user enters an invalid model name at startup time, will not
  try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
  line prompt.

* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args

* exclude dev/diffusers from "fail for draft PRs"

* disable "fail on PR jobs"

* re-add `--skip-sd-weights` since no space

* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`

* clean up model load failure handling

- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
  successfully load.
- Restart invokeai after reconfiguration.

* further edge-case handling

1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all

* fix incorrect model status listing

- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
   - Passing an invalid model name to generate.set_model() will return
     a KeyError
   - All other exceptions are returned as the appropriate Exception

* CI: do download weights (if not already cached)

* diffusers: fix scheduler loading in offline mode

* CI: fix model name (no longer has `diffusers-` prefix)

* Update txt2img2img.py (#2256)

* fixes to share models with HuggingFace cache system

- If HF_HOME environment variable is defined, then all huggingface models
  are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
  This is equivalent to setting HF_HOME to ~/invokeai/models

A future commit will add a migration mechanism so that this change doesn't
break previous installs.

* feat - make model storage compatible with hugging face caching system

This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.

- If the HF_HOME environment variable is not set, then models are
  cached in ~/invokeai/models in a format that is identical to the
  HuggingFace cache.

- If HF_HOME is set, then models are cached wherever HF_HOME points.

- To enable sharing with other HuggingFace library clients, set
  HF_HOME to ~/.cache/huggingface to set the default cache location
  or to ~/invokeai/models to have huggingface cache inside InvokeAI.

* fixes to share models with HuggingFace cache system

    - If HF_HOME environment variable is defined, then all huggingface models
      are stored in that directory following the standard conventions.
    - For seamless interoperability, set HF_HOME to ~/.cache/huggingface
    - If HF_HOME not defined, then models are stored in ~/invokeai/models.
      This is equivalent to setting HF_HOME to ~/invokeai/models

    A future commit will add a migration mechanism so that this change doesn't
    break previous installs.

* fix error "no attribute CkptInpaint"

* model_manager.list_models() returns entire model config stanza+status

* Initial Draft - Model Manager Diffusers

* added hash function to diffusers

* implement sha256 hashes on diffusers models

* Add Model Manager Support for Diffusers

* fix various problems with model manager

- in cli import functions, fix not enough values to unpack from
  _get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser

* rebuild frontend

* fix dictconfig-not-serializable issue

* fix NoneType' object is not subscriptable crash in model_manager

* fix "str has no attribute get" error in model_manager list_models()

* Add path and repo_id support for Diffusers Model Manager

Also fixes bugs

* Fix tooltip IT localization not working

* Add Version Number To WebUI

* Optimize Model Search

* Fix incorrect font on the Model Manager UI

* Fix image degradation on merge fixes - [Experimental]

This change should effectively fix a couple of things.

- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.

So far there are no side effects for this. If any, please report.

* Add local model filtering for Diffusers / Checkpoints

* Go to home on modal close for the Add Modal UI

* Styling Fixes

* Model Manager Diffusers Localization Update

* Add Safe Tensor scanning to Model Manager

* Fix model edit form dispatching string values instead of numbers.

* Resolve VAE handling / edge cases for supplied repos

* defer injecting tokens for textual inversions until they're used for the first time

* squash a console warning

* implement model migration check

* add_model() overwrites previous config rather than merges

* fix model config file attribute merging

* fix precision handling in textual inversion script

* allow ckpt conversion script to work with safetensors .ckpts

Applied patch here:
beb932c5d1

* fix name "args" is not defined crash in textual_inversion_training

* fix a second NameError: name 'args' is not defined crash

* fix loading of the safety checker from the global cache dir

* add installation step to textual inversion frontend

- After a successful training run, the script will copy learned_embeds.bin
  to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
  (which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.

* don't crash out on incompatible embeddings

- put try: blocks around places where the system tries to load an embedding
  which is incompatible with the currently loaded model

* add support for checkpoint resuming

* textual inversion preferences are saved and restored between sessions

- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
  bug in textual_inversion_training.py?

* copy learned_embeddings.bin into right location

* add front end for diffusers model merging

- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
  with the "+" character in their names.

* improve inpainting experience

- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py

* update environment*yml

* tweak instructions to install HuggingFace token

* bump version number

* enhance update scripts

- update scripts will now fetch new INITIAL_MODELS.yaml so that
  configure_invokeai.py will know about the diffusers versions.

* enhance invoke.sh/invoke.bat launchers

- added configure_invokeai.py to menu
- menu defaults to browser-based invoke

* remove conda workflow (#2321)

* fix `token_ids has shape torch.Size([79]) - expected [77]`

* update CHANGELOG.md with 2.3.* info

- Add information on how formats have changed and the upgrade process.
- Add short bug list.

Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 09:22:46 -05:00

2272 lines
79 KiB
Python

"""
wild mixture of
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
https://github.com/CompVis/taming-transformers
-- merci
"""
import torch
import torch.nn as nn
import os
import numpy as np
import pytorch_lightning as pl
from torch.optim.lr_scheduler import LambdaLR
from einops import rearrange, repeat
from contextlib import contextmanager
from functools import partial
from tqdm import tqdm
from torchvision.utils import make_grid
from pytorch_lightning.utilities.distributed import rank_zero_only
from omegaconf import ListConfig
import urllib
from ldm.modules.textual_inversion_manager import TextualInversionManager
from ldm.util import (
log_txt_as_img,
exists,
default,
ismap,
isimage,
mean_flat,
count_params,
instantiate_from_config,
)
from ldm.modules.ema import LitEma
from ldm.modules.distributions.distributions import (
normal_kl,
DiagonalGaussianDistribution,
)
from ldm.models.autoencoder import (
VQModelInterface,
IdentityFirstStage,
AutoencoderKL,
)
from ldm.modules.diffusionmodules.util import (
make_beta_schedule,
extract_into_tensor,
noise_like,
)
from ldm.models.diffusion.ddim import DDIMSampler
__conditioning_keys__ = {
'concat': 'c_concat',
'crossattn': 'c_crossattn',
'adm': 'y',
}
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
def uniform_on_device(r1, r2, shape, device):
return (r1 - r2) * torch.rand(*shape, device=device) + r2
class DDPM(pl.LightningModule):
# classic DDPM with Gaussian diffusion, in image space
def __init__(
self,
unet_config,
timesteps=1000,
beta_schedule='linear',
loss_type='l2',
ckpt_path=None,
ignore_keys=[],
load_only_unet=False,
monitor='val/loss',
use_ema=True,
first_stage_key='image',
image_size=256,
channels=3,
log_every_t=100,
clip_denoised=True,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
given_betas=None,
original_elbo_weight=0.0,
embedding_reg_weight=0.0,
v_posterior=0.0, # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
l_simple_weight=1.0,
conditioning_key=None,
parameterization='eps', # all assuming fixed variance schedules
scheduler_config=None,
use_positional_encodings=False,
learn_logvar=False,
logvar_init=0.0,
):
super().__init__()
assert parameterization in [
'eps',
'x0',
], 'currently only supporting "eps" and "x0"'
self.parameterization = parameterization
print(
f' | {self.__class__.__name__}: Running in {self.parameterization}-prediction mode'
)
self.cond_stage_model = None
self.clip_denoised = clip_denoised
self.log_every_t = log_every_t
self.first_stage_key = first_stage_key
self.image_size = image_size # try conv?
self.channels = channels
self.use_positional_encodings = use_positional_encodings
self.model = DiffusionWrapper(unet_config, conditioning_key)
count_params(self.model, verbose=True)
self.use_ema = use_ema
if self.use_ema:
self.model_ema = LitEma(self.model)
print(f' | Keeping EMAs of {len(list(self.model_ema.buffers()))}.')
self.use_scheduler = scheduler_config is not None
if self.use_scheduler:
self.scheduler_config = scheduler_config
self.v_posterior = v_posterior
self.original_elbo_weight = original_elbo_weight
self.l_simple_weight = l_simple_weight
self.embedding_reg_weight = embedding_reg_weight
if monitor is not None:
self.monitor = monitor
if ckpt_path is not None:
self.init_from_ckpt(
ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet
)
self.register_schedule(
given_betas=given_betas,
beta_schedule=beta_schedule,
timesteps=timesteps,
linear_start=linear_start,
linear_end=linear_end,
cosine_s=cosine_s,
)
self.loss_type = loss_type
self.learn_logvar = learn_logvar
self.logvar = torch.full(
fill_value=logvar_init, size=(self.num_timesteps,)
)
if self.learn_logvar:
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
def register_schedule(
self,
given_betas=None,
beta_schedule='linear',
timesteps=1000,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
):
if exists(given_betas):
betas = given_betas
else:
betas = make_beta_schedule(
beta_schedule,
timesteps,
linear_start=linear_start,
linear_end=linear_end,
cosine_s=cosine_s,
)
alphas = 1.0 - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
(timesteps,) = betas.shape
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
assert (
alphas_cumprod.shape[0] == self.num_timesteps
), 'alphas have to be defined for each timestep'
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer('betas', to_torch(betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer(
'alphas_cumprod_prev', to_torch(alphas_cumprod_prev)
)
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer(
'sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))
)
self.register_buffer(
'sqrt_one_minus_alphas_cumprod',
to_torch(np.sqrt(1.0 - alphas_cumprod)),
)
self.register_buffer(
'log_one_minus_alphas_cumprod',
to_torch(np.log(1.0 - alphas_cumprod)),
)
self.register_buffer(
'sqrt_recip_alphas_cumprod',
to_torch(np.sqrt(1.0 / alphas_cumprod)),
)
self.register_buffer(
'sqrt_recipm1_alphas_cumprod',
to_torch(np.sqrt(1.0 / alphas_cumprod - 1)),
)
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = (1 - self.v_posterior) * betas * (
1.0 - alphas_cumprod_prev
) / (1.0 - alphas_cumprod) + self.v_posterior * betas
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer(
'posterior_variance', to_torch(posterior_variance)
)
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer(
'posterior_log_variance_clipped',
to_torch(np.log(np.maximum(posterior_variance, 1e-20))),
)
self.register_buffer(
'posterior_mean_coef1',
to_torch(
betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)
),
)
self.register_buffer(
'posterior_mean_coef2',
to_torch(
(1.0 - alphas_cumprod_prev)
* np.sqrt(alphas)
/ (1.0 - alphas_cumprod)
),
)
if self.parameterization == 'eps':
lvlb_weights = self.betas**2 / (
2
* self.posterior_variance
* to_torch(alphas)
* (1 - self.alphas_cumprod)
)
elif self.parameterization == 'x0':
lvlb_weights = (
0.5
* np.sqrt(torch.Tensor(alphas_cumprod))
/ (2.0 * 1 - torch.Tensor(alphas_cumprod))
)
else:
raise NotImplementedError('mu not supported')
# TODO how to choose this term
lvlb_weights[0] = lvlb_weights[1]
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
assert not torch.isnan(self.lvlb_weights).all()
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.model_ema.store(self.model.parameters())
self.model_ema.copy_to(self.model)
if context is not None:
print(f'{context}: Switched to EMA weights')
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.model.parameters())
if context is not None:
print(f'{context}: Restored training weights')
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
sd = torch.load(path, map_location='cpu')
if 'state_dict' in list(sd.keys()):
sd = sd['state_dict']
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print('Deleting key {} from state_dict.'.format(k))
del sd[k]
missing, unexpected = (
self.load_state_dict(sd, strict=False)
if not only_model
else self.model.load_state_dict(sd, strict=False)
)
print(
f'Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys'
)
if len(missing) > 0:
print(f'Missing Keys: {missing}')
if len(unexpected) > 0:
print(f'Unexpected Keys: {unexpected}')
def q_mean_variance(self, x_start, t):
"""
Get the distribution q(x_t | x_0).
:param x_start: the [N x C x ...] tensor of noiseless inputs.
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
"""
mean = (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape)
* x_start
)
variance = extract_into_tensor(
1.0 - self.alphas_cumprod, t, x_start.shape
)
log_variance = extract_into_tensor(
self.log_one_minus_alphas_cumprod, t, x_start.shape
)
return mean, variance, log_variance
def predict_start_from_noise(self, x_t, t, noise):
return (
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape)
* x_t
- extract_into_tensor(
self.sqrt_recipm1_alphas_cumprod, t, x_t.shape
)
* noise
)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape)
* x_start
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape)
* x_t
)
posterior_variance = extract_into_tensor(
self.posterior_variance, t, x_t.shape
)
posterior_log_variance_clipped = extract_into_tensor(
self.posterior_log_variance_clipped, t, x_t.shape
)
return (
posterior_mean,
posterior_variance,
posterior_log_variance_clipped,
)
def p_mean_variance(self, x, t, clip_denoised: bool):
model_out = self.model(x, t)
if self.parameterization == 'eps':
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
elif self.parameterization == 'x0':
x_recon = model_out
if clip_denoised:
x_recon.clamp_(-1.0, 1.0)
(
model_mean,
posterior_variance,
posterior_log_variance,
) = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(
x=x, t=t, clip_denoised=clip_denoised
)
noise = noise_like(x.shape, device, repeat_noise)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(
b, *((1,) * (len(x.shape) - 1))
)
return (
model_mean
+ nonzero_mask * (0.5 * model_log_variance).exp() * noise
)
@torch.no_grad()
def p_sample_loop(self, shape, return_intermediates=False):
device = self.betas.device
b = shape[0]
img = torch.randn(shape, device=device)
intermediates = [img]
for i in tqdm(
reversed(range(0, self.num_timesteps)),
desc='Sampling t',
total=self.num_timesteps,
dynamic_ncols=True,
):
img = self.p_sample(
img,
torch.full((b,), i, device=device, dtype=torch.long),
clip_denoised=self.clip_denoised,
)
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
intermediates.append(img)
if return_intermediates:
return img, intermediates
return img
@torch.no_grad()
def sample(self, batch_size=16, return_intermediates=False):
image_size = self.image_size
channels = self.channels
return self.p_sample_loop(
(batch_size, channels, image_size, image_size),
return_intermediates=return_intermediates,
)
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape)
* x_start
+ extract_into_tensor(
self.sqrt_one_minus_alphas_cumprod, t, x_start.shape
)
* noise
)
def get_loss(self, pred, target, mean=True):
if self.loss_type == 'l1':
loss = (target - pred).abs()
if mean:
loss = loss.mean()
elif self.loss_type == 'l2':
if mean:
loss = torch.nn.functional.mse_loss(target, pred)
else:
loss = torch.nn.functional.mse_loss(
target, pred, reduction='none'
)
else:
raise NotImplementedError("unknown loss type '{loss_type}'")
return loss
def p_losses(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
model_out = self.model(x_noisy, t)
loss_dict = {}
if self.parameterization == 'eps':
target = noise
elif self.parameterization == 'x0':
target = x_start
else:
raise NotImplementedError(
f'Paramterization {self.parameterization} not yet supported'
)
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
log_prefix = 'train' if self.training else 'val'
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
loss_simple = loss.mean() * self.l_simple_weight
loss_vlb = (self.lvlb_weights[t] * loss).mean()
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
loss = loss_simple + self.original_elbo_weight * loss_vlb
loss_dict.update({f'{log_prefix}/loss': loss})
return loss, loss_dict
def forward(self, x, *args, **kwargs):
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
t = torch.randint(
0, self.num_timesteps, (x.shape[0],), device=self.device
).long()
return self.p_losses(x, t, *args, **kwargs)
def get_input(self, batch, k):
x = batch[k]
if len(x.shape) == 3:
x = x[..., None]
x = rearrange(x, 'b h w c -> b c h w')
x = x.to(memory_format=torch.contiguous_format).float()
return x
def shared_step(self, batch):
x = self.get_input(batch, self.first_stage_key)
loss, loss_dict = self(x)
return loss, loss_dict
def training_step(self, batch, batch_idx):
loss, loss_dict = self.shared_step(batch)
self.log_dict(
loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True
)
self.log(
'global_step',
self.global_step,
prog_bar=True,
logger=True,
on_step=True,
on_epoch=False,
)
if self.use_scheduler:
lr = self.optimizers().param_groups[0]['lr']
self.log(
'lr_abs',
lr,
prog_bar=True,
logger=True,
on_step=True,
on_epoch=False,
)
return loss
@torch.no_grad()
def validation_step(self, batch, batch_idx):
_, loss_dict_no_ema = self.shared_step(batch)
with self.ema_scope():
_, loss_dict_ema = self.shared_step(batch)
loss_dict_ema = {
key + '_ema': loss_dict_ema[key] for key in loss_dict_ema
}
self.log_dict(
loss_dict_no_ema,
prog_bar=False,
logger=True,
on_step=False,
on_epoch=True,
)
self.log_dict(
loss_dict_ema,
prog_bar=False,
logger=True,
on_step=False,
on_epoch=True,
)
def on_train_batch_end(self, *args, **kwargs):
if self.use_ema:
self.model_ema(self.model)
def _get_rows_from_list(self, samples):
n_imgs_per_row = len(samples)
denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
return denoise_grid
@torch.no_grad()
def log_images(
self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs
):
log = dict()
x = self.get_input(batch, self.first_stage_key)
N = min(x.shape[0], N)
n_row = min(x.shape[0], n_row)
x = x.to(self.device)[:N]
log['inputs'] = x
# get diffusion row
diffusion_row = list()
x_start = x[:n_row]
for t in range(self.num_timesteps):
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
t = t.to(self.device).long()
noise = torch.randn_like(x_start)
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
diffusion_row.append(x_noisy)
log['diffusion_row'] = self._get_rows_from_list(diffusion_row)
if sample:
# get denoise row
with self.ema_scope('Plotting'):
samples, denoise_row = self.sample(
batch_size=N, return_intermediates=True
)
log['samples'] = samples
log['denoise_row'] = self._get_rows_from_list(denoise_row)
if return_keys:
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
return log
else:
return {key: log[key] for key in return_keys}
return log
def configure_optimizers(self):
lr = self.learning_rate
params = list(self.model.parameters())
if self.learn_logvar:
params = params + [self.logvar]
opt = torch.optim.AdamW(params, lr=lr)
return opt
class LatentDiffusion(DDPM):
"""main class"""
def __init__(
self,
first_stage_config,
cond_stage_config,
personalization_config,
num_timesteps_cond=None,
cond_stage_key='image',
cond_stage_trainable=False,
concat_mode=True,
cond_stage_forward=None,
conditioning_key=None,
scale_factor=1.0,
scale_by_std=False,
*args,
**kwargs,
):
self.num_timesteps_cond = default(num_timesteps_cond, 1)
self.scale_by_std = scale_by_std
assert self.num_timesteps_cond <= kwargs['timesteps']
# for backwards compatibility after implementation of DiffusionWrapper
if conditioning_key is None:
conditioning_key = 'concat' if concat_mode else 'crossattn'
if cond_stage_config == '__is_unconditional__':
conditioning_key = None
ckpt_path = kwargs.pop('ckpt_path', None)
ignore_keys = kwargs.pop('ignore_keys', [])
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
self.concat_mode = concat_mode
self.cond_stage_trainable = cond_stage_trainable
self.cond_stage_key = cond_stage_key
try:
self.num_downs = (
len(first_stage_config.params.ddconfig.ch_mult) - 1
)
except:
self.num_downs = 0
if not scale_by_std:
self.scale_factor = scale_factor
else:
self.register_buffer('scale_factor', torch.tensor(scale_factor))
self.instantiate_first_stage(first_stage_config)
self.instantiate_cond_stage(cond_stage_config)
self.cond_stage_forward = cond_stage_forward
self.clip_denoised = False
self.bbox_tokenizer = None
self.restarted_from_ckpt = False
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys)
self.restarted_from_ckpt = True
self.cond_stage_model.train = disabled_train
for param in self.cond_stage_model.parameters():
param.requires_grad = False
self.model.eval()
self.model.train = disabled_train
for param in self.model.parameters():
param.requires_grad = False
self.embedding_manager = self.instantiate_embedding_manager(
personalization_config, self.cond_stage_model
)
self.textual_inversion_manager = TextualInversionManager(
tokenizer = self.cond_stage_model.tokenizer,
text_encoder = self.cond_stage_model.transformer,
full_precision = True
)
# this circular component dependency is gross and bad, needs to be rethought
self.cond_stage_model.set_textual_inversion_manager(self.textual_inversion_manager)
self.emb_ckpt_counter = 0
# if self.embedding_manager.is_clip:
# self.cond_stage_model.update_embedding_func(self.embedding_manager)
for param in self.embedding_manager.embedding_parameters():
param.requires_grad = True
def make_cond_schedule(
self,
):
self.cond_ids = torch.full(
size=(self.num_timesteps,),
fill_value=self.num_timesteps - 1,
dtype=torch.long,
)
ids = torch.round(
torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)
).long()
self.cond_ids[: self.num_timesteps_cond] = ids
@rank_zero_only
@torch.no_grad()
def on_train_batch_start(self, batch, batch_idx, dataloader_idx=None):
# only for very first batch
if (
self.scale_by_std
and self.current_epoch == 0
and self.global_step == 0
and batch_idx == 0
and not self.restarted_from_ckpt
):
assert (
self.scale_factor == 1.0
), 'rather not use custom rescaling and std-rescaling simultaneously'
# set rescale weight to 1./std of encodings
print('### USING STD-RESCALING ###')
x = super().get_input(batch, self.first_stage_key)
x = x.to(self.device)
encoder_posterior = self.encode_first_stage(x)
z = self.get_first_stage_encoding(encoder_posterior).detach()
del self.scale_factor
self.register_buffer('scale_factor', 1.0 / z.flatten().std())
print(f'setting self.scale_factor to {self.scale_factor}')
print('### USING STD-RESCALING ###')
def register_schedule(
self,
given_betas=None,
beta_schedule='linear',
timesteps=1000,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
):
super().register_schedule(
given_betas,
beta_schedule,
timesteps,
linear_start,
linear_end,
cosine_s,
)
self.shorten_cond_schedule = self.num_timesteps_cond > 1
if self.shorten_cond_schedule:
self.make_cond_schedule()
def instantiate_first_stage(self, config):
model = instantiate_from_config(config)
self.first_stage_model = model.eval()
self.first_stage_model.train = disabled_train
for param in self.first_stage_model.parameters():
param.requires_grad = False
def instantiate_cond_stage(self, config):
if not self.cond_stage_trainable:
if config == '__is_first_stage__':
print('Using first stage also as cond stage.')
self.cond_stage_model = self.first_stage_model
elif config == '__is_unconditional__':
print(
f'Training {self.__class__.__name__} as an unconditional model.'
)
self.cond_stage_model = None
# self.be_unconditional = True
else:
model = instantiate_from_config(config)
self.cond_stage_model = model.eval()
self.cond_stage_model.train = disabled_train
for param in self.cond_stage_model.parameters():
param.requires_grad = False
else:
assert config != '__is_first_stage__'
assert config != '__is_unconditional__'
try:
model = instantiate_from_config(config)
except urllib.error.URLError:
raise SystemExit(
"* Couldn't load a dependency. Try running scripts/preload_models.py from an internet-conected machine."
)
self.cond_stage_model = model
def instantiate_embedding_manager(self, config, embedder):
model = instantiate_from_config(config, embedder=embedder)
if config.params.get(
'embedding_manager_ckpt', None
): # do not load if missing OR empty string
model.load(config.params.embedding_manager_ckpt)
return model
def _get_denoise_row_from_list(
self, samples, desc='', force_no_decoder_quantization=False
):
denoise_row = []
for zd in tqdm(samples, desc=desc):
denoise_row.append(
self.decode_first_stage(
zd.to(self.device),
force_not_quantize=force_no_decoder_quantization,
)
)
n_imgs_per_row = len(denoise_row)
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
return denoise_grid
def get_first_stage_encoding(self, encoder_posterior):
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
z = encoder_posterior.sample()
elif isinstance(encoder_posterior, torch.Tensor):
z = encoder_posterior
else:
raise NotImplementedError(
f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented"
)
return self.scale_factor * z
def get_learned_conditioning(self, c, **kwargs):
if self.cond_stage_forward is None:
if hasattr(self.cond_stage_model, 'encode') and callable(
self.cond_stage_model.encode
):
c = self.cond_stage_model.encode(
c, embedding_manager=self.embedding_manager,**kwargs
)
if isinstance(c, DiagonalGaussianDistribution):
c = c.mode()
else:
c = self.cond_stage_model(c, **kwargs)
else:
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c, **kwargs)
return c
def meshgrid(self, h, w):
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
arr = torch.cat([y, x], dim=-1)
return arr
def delta_border(self, h, w):
"""
:param h: height
:param w: width
:return: normalized distance to image border,
wtith min distance = 0 at border and max dist = 0.5 at image center
"""
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
arr = self.meshgrid(h, w) / lower_right_corner
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
edge_dist = torch.min(
torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1
)[0]
return edge_dist
def get_weighting(self, h, w, Ly, Lx, device):
weighting = self.delta_border(h, w)
weighting = torch.clip(
weighting,
self.split_input_params['clip_min_weight'],
self.split_input_params['clip_max_weight'],
)
weighting = (
weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
)
if self.split_input_params['tie_braker']:
L_weighting = self.delta_border(Ly, Lx)
L_weighting = torch.clip(
L_weighting,
self.split_input_params['clip_min_tie_weight'],
self.split_input_params['clip_max_tie_weight'],
)
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
weighting = weighting * L_weighting
return weighting
def get_fold_unfold(
self, x, kernel_size, stride, uf=1, df=1
): # todo load once not every time, shorten code
"""
:param x: img of size (bs, c, h, w)
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
"""
bs, nc, h, w = x.shape
# number of crops in image
Ly = (h - kernel_size[0]) // stride[0] + 1
Lx = (w - kernel_size[1]) // stride[1] + 1
if uf == 1 and df == 1:
fold_params = dict(
kernel_size=kernel_size, dilation=1, padding=0, stride=stride
)
unfold = torch.nn.Unfold(**fold_params)
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
weighting = self.get_weighting(
kernel_size[0], kernel_size[1], Ly, Lx, x.device
).to(x.dtype)
normalization = fold(weighting).view(
1, 1, h, w
) # normalizes the overlap
weighting = weighting.view(
(1, 1, kernel_size[0], kernel_size[1], Ly * Lx)
)
elif uf > 1 and df == 1:
fold_params = dict(
kernel_size=kernel_size, dilation=1, padding=0, stride=stride
)
unfold = torch.nn.Unfold(**fold_params)
fold_params2 = dict(
kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
dilation=1,
padding=0,
stride=(stride[0] * uf, stride[1] * uf),
)
fold = torch.nn.Fold(
output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2
)
weighting = self.get_weighting(
kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device
).to(x.dtype)
normalization = fold(weighting).view(
1, 1, h * uf, w * uf
) # normalizes the overlap
weighting = weighting.view(
(1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)
)
elif df > 1 and uf == 1:
fold_params = dict(
kernel_size=kernel_size, dilation=1, padding=0, stride=stride
)
unfold = torch.nn.Unfold(**fold_params)
fold_params2 = dict(
kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
dilation=1,
padding=0,
stride=(stride[0] // df, stride[1] // df),
)
fold = torch.nn.Fold(
output_size=(x.shape[2] // df, x.shape[3] // df),
**fold_params2,
)
weighting = self.get_weighting(
kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device
).to(x.dtype)
normalization = fold(weighting).view(
1, 1, h // df, w // df
) # normalizes the overlap
weighting = weighting.view(
(1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx)
)
else:
raise NotImplementedError
return fold, unfold, normalization, weighting
@torch.no_grad()
def get_input(
self,
batch,
k,
return_first_stage_outputs=False,
force_c_encode=False,
cond_key=None,
return_original_cond=False,
bs=None,
):
x = super().get_input(batch, k)
if bs is not None:
x = x[:bs]
x = x.to(self.device)
encoder_posterior = self.encode_first_stage(x)
z = self.get_first_stage_encoding(encoder_posterior).detach()
if self.model.conditioning_key is not None:
if cond_key is None:
cond_key = self.cond_stage_key
if cond_key != self.first_stage_key:
if cond_key in ['caption', 'coordinates_bbox']:
xc = batch[cond_key]
elif cond_key == 'class_label':
xc = batch
else:
xc = super().get_input(batch, cond_key).to(self.device)
else:
xc = x
if not self.cond_stage_trainable or force_c_encode:
if isinstance(xc, dict) or isinstance(xc, list):
# import pudb; pudb.set_trace()
c = self.get_learned_conditioning(xc)
else:
c = self.get_learned_conditioning(xc.to(self.device))
else:
c = xc
if bs is not None:
c = c[:bs]
if self.use_positional_encodings:
pos_x, pos_y = self.compute_latent_shifts(batch)
ckey = __conditioning_keys__[self.model.conditioning_key]
c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
else:
c = None
xc = None
if self.use_positional_encodings:
pos_x, pos_y = self.compute_latent_shifts(batch)
c = {'pos_x': pos_x, 'pos_y': pos_y}
out = [z, c]
if return_first_stage_outputs:
xrec = self.decode_first_stage(z)
out.extend([x, xrec])
if return_original_cond:
out.append(xc)
return out
@torch.no_grad()
def decode_first_stage(
self, z, predict_cids=False, force_not_quantize=False
):
if predict_cids:
if z.dim() == 4:
z = torch.argmax(z.exp(), dim=1).long()
z = self.first_stage_model.quantize.get_codebook_entry(
z, shape=None
)
z = rearrange(z, 'b h w c -> b c h w').contiguous()
z = 1.0 / self.scale_factor * z
if hasattr(self, 'split_input_params'):
if self.split_input_params['patch_distributed_vq']:
ks = self.split_input_params['ks'] # eg. (128, 128)
stride = self.split_input_params['stride'] # eg. (64, 64)
uf = self.split_input_params['vqf']
bs, nc, h, w = z.shape
if ks[0] > h or ks[1] > w:
ks = (min(ks[0], h), min(ks[1], w))
print('reducing Kernel')
if stride[0] > h or stride[1] > w:
stride = (min(stride[0], h), min(stride[1], w))
print('reducing stride')
fold, unfold, normalization, weighting = self.get_fold_unfold(
z, ks, stride, uf=uf
)
z = unfold(z) # (bn, nc * prod(**ks), L)
# 1. Reshape to img shape
z = z.view(
(z.shape[0], -1, ks[0], ks[1], z.shape[-1])
) # (bn, nc, ks[0], ks[1], L )
# 2. apply model loop over last dim
if isinstance(self.first_stage_model, VQModelInterface):
output_list = [
self.first_stage_model.decode(
z[:, :, :, :, i],
force_not_quantize=predict_cids
or force_not_quantize,
)
for i in range(z.shape[-1])
]
else:
output_list = [
self.first_stage_model.decode(z[:, :, :, :, i])
for i in range(z.shape[-1])
]
o = torch.stack(
output_list, axis=-1
) # # (bn, nc, ks[0], ks[1], L)
o = o * weighting
# Reverse 1. reshape to img shape
o = o.view(
(o.shape[0], -1, o.shape[-1])
) # (bn, nc * ks[0] * ks[1], L)
# stitch crops together
decoded = fold(o)
decoded = decoded / normalization # norm is shape (1, 1, h, w)
return decoded
else:
if isinstance(self.first_stage_model, VQModelInterface):
return self.first_stage_model.decode(
z,
force_not_quantize=predict_cids or force_not_quantize,
)
else:
return self.first_stage_model.decode(z)
else:
if isinstance(self.first_stage_model, VQModelInterface):
return self.first_stage_model.decode(
z, force_not_quantize=predict_cids or force_not_quantize
)
else:
return self.first_stage_model.decode(z)
# same as above but without decorator
def differentiable_decode_first_stage(
self, z, predict_cids=False, force_not_quantize=False
):
if predict_cids:
if z.dim() == 4:
z = torch.argmax(z.exp(), dim=1).long()
z = self.first_stage_model.quantize.get_codebook_entry(
z, shape=None
)
z = rearrange(z, 'b h w c -> b c h w').contiguous()
z = 1.0 / self.scale_factor * z
if hasattr(self, 'split_input_params'):
if self.split_input_params['patch_distributed_vq']:
ks = self.split_input_params['ks'] # eg. (128, 128)
stride = self.split_input_params['stride'] # eg. (64, 64)
uf = self.split_input_params['vqf']
bs, nc, h, w = z.shape
if ks[0] > h or ks[1] > w:
ks = (min(ks[0], h), min(ks[1], w))
print('reducing Kernel')
if stride[0] > h or stride[1] > w:
stride = (min(stride[0], h), min(stride[1], w))
print('reducing stride')
fold, unfold, normalization, weighting = self.get_fold_unfold(
z, ks, stride, uf=uf
)
z = unfold(z) # (bn, nc * prod(**ks), L)
# 1. Reshape to img shape
z = z.view(
(z.shape[0], -1, ks[0], ks[1], z.shape[-1])
) # (bn, nc, ks[0], ks[1], L )
# 2. apply model loop over last dim
if isinstance(self.first_stage_model, VQModelInterface):
output_list = [
self.first_stage_model.decode(
z[:, :, :, :, i],
force_not_quantize=predict_cids
or force_not_quantize,
)
for i in range(z.shape[-1])
]
else:
output_list = [
self.first_stage_model.decode(z[:, :, :, :, i])
for i in range(z.shape[-1])
]
o = torch.stack(
output_list, axis=-1
) # # (bn, nc, ks[0], ks[1], L)
o = o * weighting
# Reverse 1. reshape to img shape
o = o.view(
(o.shape[0], -1, o.shape[-1])
) # (bn, nc * ks[0] * ks[1], L)
# stitch crops together
decoded = fold(o)
decoded = decoded / normalization # norm is shape (1, 1, h, w)
return decoded
else:
if isinstance(self.first_stage_model, VQModelInterface):
return self.first_stage_model.decode(
z,
force_not_quantize=predict_cids or force_not_quantize,
)
else:
return self.first_stage_model.decode(z)
else:
if isinstance(self.first_stage_model, VQModelInterface):
return self.first_stage_model.decode(
z, force_not_quantize=predict_cids or force_not_quantize
)
else:
return self.first_stage_model.decode(z)
@torch.no_grad()
def encode_first_stage(self, x):
if hasattr(self, 'split_input_params'):
if self.split_input_params['patch_distributed_vq']:
ks = self.split_input_params['ks'] # eg. (128, 128)
stride = self.split_input_params['stride'] # eg. (64, 64)
df = self.split_input_params['vqf']
self.split_input_params['original_image_size'] = x.shape[-2:]
bs, nc, h, w = x.shape
if ks[0] > h or ks[1] > w:
ks = (min(ks[0], h), min(ks[1], w))
print('reducing Kernel')
if stride[0] > h or stride[1] > w:
stride = (min(stride[0], h), min(stride[1], w))
print('reducing stride')
fold, unfold, normalization, weighting = self.get_fold_unfold(
x, ks, stride, df=df
)
z = unfold(x) # (bn, nc * prod(**ks), L)
# Reshape to img shape
z = z.view(
(z.shape[0], -1, ks[0], ks[1], z.shape[-1])
) # (bn, nc, ks[0], ks[1], L )
output_list = [
self.first_stage_model.encode(z[:, :, :, :, i])
for i in range(z.shape[-1])
]
o = torch.stack(output_list, axis=-1)
o = o * weighting
# Reverse reshape to img shape
o = o.view(
(o.shape[0], -1, o.shape[-1])
) # (bn, nc * ks[0] * ks[1], L)
# stitch crops together
decoded = fold(o)
decoded = decoded / normalization
return decoded
else:
return self.first_stage_model.encode(x)
else:
return self.first_stage_model.encode(x)
def shared_step(self, batch, **kwargs):
x, c = self.get_input(batch, self.first_stage_key)
loss = self(x, c)
return loss
def forward(self, x, c, *args, **kwargs):
t = torch.randint(
0, self.num_timesteps, (x.shape[0],), device=self.device
).long()
if self.model.conditioning_key is not None:
assert c is not None
if self.cond_stage_trainable:
c = self.get_learned_conditioning(c)
if self.shorten_cond_schedule: # TODO: drop this option
tc = self.cond_ids[t].to(self.device)
c = self.q_sample(
x_start=c, t=tc, noise=torch.randn_like(c.float())
)
return self.p_losses(x, c, t, *args, **kwargs)
def _rescale_annotations(
self, bboxes, crop_coordinates
): # TODO: move to dataset
def rescale_bbox(bbox):
x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
w = min(bbox[2] / crop_coordinates[2], 1 - x0)
h = min(bbox[3] / crop_coordinates[3], 1 - y0)
return x0, y0, w, h
return [rescale_bbox(b) for b in bboxes]
def apply_model(self, x_noisy, t, cond, return_ids=False):
if isinstance(cond, dict):
# hybrid case, cond is exptected to be a dict
pass
else:
if not isinstance(cond, list):
cond = [cond]
key = (
'c_concat'
if self.model.conditioning_key == 'concat'
else 'c_crossattn'
)
cond = {key: cond}
if hasattr(self, 'split_input_params'):
assert (
len(cond) == 1
) # todo can only deal with one conditioning atm
assert not return_ids
ks = self.split_input_params['ks'] # eg. (128, 128)
stride = self.split_input_params['stride'] # eg. (64, 64)
h, w = x_noisy.shape[-2:]
fold, unfold, normalization, weighting = self.get_fold_unfold(
x_noisy, ks, stride
)
z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
# Reshape to img shape
z = z.view(
(z.shape[0], -1, ks[0], ks[1], z.shape[-1])
) # (bn, nc, ks[0], ks[1], L )
z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
if (
self.cond_stage_key
in ['image', 'LR_image', 'segmentation', 'bbox_img']
and self.model.conditioning_key
): # todo check for completeness
c_key = next(iter(cond.keys())) # get key
c = next(iter(cond.values())) # get value
assert (
len(c) == 1
) # todo extend to list with more than one elem
c = c[0] # get element
c = unfold(c)
c = c.view(
(c.shape[0], -1, ks[0], ks[1], c.shape[-1])
) # (bn, nc, ks[0], ks[1], L )
cond_list = [
{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])
]
elif self.cond_stage_key == 'coordinates_bbox':
assert (
'original_image_size' in self.split_input_params
), 'BoudingBoxRescaling is missing original_image_size'
# assuming padding of unfold is always 0 and its dilation is always 1
n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
full_img_h, full_img_w = self.split_input_params[
'original_image_size'
]
# as we are operating on latents, we need the factor from the original image size to the
# spatial latent size to properly rescale the crops for regenerating the bbox annotations
num_downs = self.first_stage_model.encoder.num_resolutions - 1
rescale_latent = 2 ** (num_downs)
# get top left positions of patches as conforming for the bbbox tokenizer, therefore we
# need to rescale the tl patch coordinates to be in between (0,1)
tl_patch_coordinates = [
(
rescale_latent
* stride[0]
* (patch_nr % n_patches_per_row)
/ full_img_w,
rescale_latent
* stride[1]
* (patch_nr // n_patches_per_row)
/ full_img_h,
)
for patch_nr in range(z.shape[-1])
]
# patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
patch_limits = [
(
x_tl,
y_tl,
rescale_latent * ks[0] / full_img_w,
rescale_latent * ks[1] / full_img_h,
)
for x_tl, y_tl in tl_patch_coordinates
]
# patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
# tokenize crop coordinates for the bounding boxes of the respective patches
patch_limits_tknzd = [
torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[
None
].to(self.device)
for bbox in patch_limits
] # list of length l with tensors of shape (1, 2)
print(patch_limits_tknzd[0].shape)
# cut tknzd crop position from conditioning
assert isinstance(
cond, dict
), 'cond must be dict to be fed into model'
cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
print(cut_cond.shape)
adapted_cond = torch.stack(
[
torch.cat([cut_cond, p], dim=1)
for p in patch_limits_tknzd
]
)
adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
print(adapted_cond.shape)
adapted_cond = self.get_learned_conditioning(adapted_cond)
print(adapted_cond.shape)
adapted_cond = rearrange(
adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1]
)
print(adapted_cond.shape)
cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
else:
cond_list = [
cond for i in range(z.shape[-1])
] # Todo make this more efficient
# apply model by loop over crops
output_list = [
self.model(z_list[i], t, **cond_list[i])
for i in range(z.shape[-1])
]
assert not isinstance(
output_list[0], tuple
) # todo cant deal with multiple model outputs check this never happens
o = torch.stack(output_list, axis=-1)
o = o * weighting
# Reverse reshape to img shape
o = o.view(
(o.shape[0], -1, o.shape[-1])
) # (bn, nc * ks[0] * ks[1], L)
# stitch crops together
x_recon = fold(o) / normalization
else:
x_recon = self.model(x_noisy, t, **cond)
if isinstance(x_recon, tuple) and not return_ids:
return x_recon[0]
else:
return x_recon
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
return (
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape)
* x_t
- pred_xstart
) / extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
def _prior_bpd(self, x_start):
"""
Get the prior KL term for the variational lower-bound, measured in
bits-per-dim.
This term can't be optimized, as it only depends on the encoder.
:param x_start: the [N x C x ...] tensor of inputs.
:return: a batch of [N] KL values (in bits), one per batch element.
"""
batch_size = x_start.shape[0]
t = torch.tensor(
[self.num_timesteps - 1] * batch_size, device=x_start.device
)
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
kl_prior = normal_kl(
mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0
)
return mean_flat(kl_prior) / np.log(2.0)
def p_losses(self, x_start, cond, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
model_output = self.apply_model(x_noisy, t, cond)
loss_dict = {}
prefix = 'train' if self.training else 'val'
if self.parameterization == 'x0':
target = x_start
elif self.parameterization == 'eps':
target = noise
else:
raise NotImplementedError()
loss_simple = self.get_loss(model_output, target, mean=False).mean(
[1, 2, 3]
)
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
logvar_t = self.logvar[t.item()].to(self.device)
loss = loss_simple / torch.exp(logvar_t) + logvar_t
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
if self.learn_logvar:
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
loss_dict.update({'logvar': self.logvar.data.mean()})
loss = self.l_simple_weight * loss.mean()
loss_vlb = self.get_loss(model_output, target, mean=False).mean(
dim=(1, 2, 3)
)
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
loss += self.original_elbo_weight * loss_vlb
loss_dict.update({f'{prefix}/loss': loss})
if self.embedding_reg_weight > 0:
loss_embedding_reg = (
self.embedding_manager.embedding_to_coarse_loss().mean()
)
loss_dict.update({f'{prefix}/loss_emb_reg': loss_embedding_reg})
loss += self.embedding_reg_weight * loss_embedding_reg
loss_dict.update({f'{prefix}/loss': loss})
return loss, loss_dict
def p_mean_variance(
self,
x,
c,
t,
clip_denoised: bool,
return_codebook_ids=False,
quantize_denoised=False,
return_x0=False,
score_corrector=None,
corrector_kwargs=None,
):
t_in = t
model_out = self.apply_model(
x, t_in, c, return_ids=return_codebook_ids
)
if score_corrector is not None:
assert self.parameterization == 'eps'
model_out = score_corrector.modify_score(
self, model_out, x, t, c, **corrector_kwargs
)
if return_codebook_ids:
model_out, logits = model_out
if self.parameterization == 'eps':
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
elif self.parameterization == 'x0':
x_recon = model_out
else:
raise NotImplementedError()
if clip_denoised:
x_recon.clamp_(-1.0, 1.0)
if quantize_denoised:
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(
x_recon
)
(
model_mean,
posterior_variance,
posterior_log_variance,
) = self.q_posterior(x_start=x_recon, x_t=x, t=t)
if return_codebook_ids:
return (
model_mean,
posterior_variance,
posterior_log_variance,
logits,
)
elif return_x0:
return (
model_mean,
posterior_variance,
posterior_log_variance,
x_recon,
)
else:
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(
self,
x,
c,
t,
clip_denoised=False,
repeat_noise=False,
return_codebook_ids=False,
quantize_denoised=False,
return_x0=False,
temperature=1.0,
noise_dropout=0.0,
score_corrector=None,
corrector_kwargs=None,
):
b, *_, device = *x.shape, x.device
outputs = self.p_mean_variance(
x=x,
c=c,
t=t,
clip_denoised=clip_denoised,
return_codebook_ids=return_codebook_ids,
quantize_denoised=quantize_denoised,
return_x0=return_x0,
score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs,
)
if return_codebook_ids:
raise DeprecationWarning('Support dropped.')
model_mean, _, model_log_variance, logits = outputs
elif return_x0:
model_mean, _, model_log_variance, x0 = outputs
else:
model_mean, _, model_log_variance = outputs
noise = noise_like(x.shape, device, repeat_noise) * temperature
if noise_dropout > 0.0:
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(
b, *((1,) * (len(x.shape) - 1))
)
if return_codebook_ids:
return model_mean + nonzero_mask * (
0.5 * model_log_variance
).exp() * noise, logits.argmax(dim=1)
if return_x0:
return (
model_mean
+ nonzero_mask * (0.5 * model_log_variance).exp() * noise,
x0,
)
else:
return (
model_mean
+ nonzero_mask * (0.5 * model_log_variance).exp() * noise
)
@torch.no_grad()
def progressive_denoising(
self,
cond,
shape,
verbose=True,
callback=None,
quantize_denoised=False,
img_callback=None,
mask=None,
x0=None,
temperature=1.0,
noise_dropout=0.0,
score_corrector=None,
corrector_kwargs=None,
batch_size=None,
x_T=None,
start_T=None,
log_every_t=None,
):
if not log_every_t:
log_every_t = self.log_every_t
timesteps = self.num_timesteps
if batch_size is not None:
b = batch_size if batch_size is not None else shape[0]
shape = [batch_size] + list(shape)
else:
b = batch_size = shape[0]
if x_T is None:
img = torch.randn(shape, device=self.device)
else:
img = x_T
intermediates = []
if cond is not None:
if isinstance(cond, dict):
cond = {
key: cond[key][:batch_size]
if not isinstance(cond[key], list)
else list(map(lambda x: x[:batch_size], cond[key]))
for key in cond
}
else:
cond = (
[c[:batch_size] for c in cond]
if isinstance(cond, list)
else cond[:batch_size]
)
if start_T is not None:
timesteps = min(timesteps, start_T)
iterator = (
tqdm(
reversed(range(0, timesteps)),
desc='Progressive Generation',
total=timesteps,
)
if verbose
else reversed(range(0, timesteps))
)
if type(temperature) == float:
temperature = [temperature] * timesteps
for i in iterator:
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
if self.shorten_cond_schedule:
assert self.model.conditioning_key != 'hybrid'
tc = self.cond_ids[ts].to(cond.device)
cond = self.q_sample(
x_start=cond, t=tc, noise=torch.randn_like(cond)
)
img, x0_partial = self.p_sample(
img,
cond,
ts,
clip_denoised=self.clip_denoised,
quantize_denoised=quantize_denoised,
return_x0=True,
temperature=temperature[i],
noise_dropout=noise_dropout,
score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs,
)
if mask is not None:
assert x0 is not None
img_orig = self.q_sample(x0, ts)
img = img_orig * mask + (1.0 - mask) * img
if i % log_every_t == 0 or i == timesteps - 1:
intermediates.append(x0_partial)
if callback:
callback(i)
if img_callback:
img_callback(img, i)
return img, intermediates
@torch.no_grad()
def p_sample_loop(
self,
cond,
shape,
return_intermediates=False,
x_T=None,
verbose=True,
callback=None,
timesteps=None,
quantize_denoised=False,
mask=None,
x0=None,
img_callback=None,
start_T=None,
log_every_t=None,
):
if not log_every_t:
log_every_t = self.log_every_t
device = self.betas.device
b = shape[0]
if x_T is None:
img = torch.randn(shape, device=device)
else:
img = x_T
intermediates = [img]
if timesteps is None:
timesteps = self.num_timesteps
if start_T is not None:
timesteps = min(timesteps, start_T)
iterator = (
tqdm(
reversed(range(0, timesteps)),
desc='Sampling t',
total=timesteps,
)
if verbose
else reversed(range(0, timesteps))
)
if mask is not None:
assert x0 is not None
assert (
x0.shape[2:3] == mask.shape[2:3]
) # spatial size has to match
for i in iterator:
ts = torch.full((b,), i, device=device, dtype=torch.long)
if self.shorten_cond_schedule:
assert self.model.conditioning_key != 'hybrid'
tc = self.cond_ids[ts].to(cond.device)
cond = self.q_sample(
x_start=cond, t=tc, noise=torch.randn_like(cond)
)
img = self.p_sample(
img,
cond,
ts,
clip_denoised=self.clip_denoised,
quantize_denoised=quantize_denoised,
)
if mask is not None:
img_orig = self.q_sample(x0, ts)
img = img_orig * mask + (1.0 - mask) * img
if i % log_every_t == 0 or i == timesteps - 1:
intermediates.append(img)
if callback:
callback(i)
if img_callback:
img_callback(img, i)
if return_intermediates:
return img, intermediates
return img
@torch.no_grad()
def sample(
self,
cond,
batch_size=16,
return_intermediates=False,
x_T=None,
verbose=True,
timesteps=None,
quantize_denoised=False,
mask=None,
x0=None,
shape=None,
**kwargs,
):
if shape is None:
shape = (
batch_size,
self.channels,
self.image_size,
self.image_size,
)
if cond is not None:
if isinstance(cond, dict):
cond = {
key: cond[key][:batch_size]
if not isinstance(cond[key], list)
else list(map(lambda x: x[:batch_size], cond[key]))
for key in cond
}
else:
cond = (
[c[:batch_size] for c in cond]
if isinstance(cond, list)
else cond[:batch_size]
)
return self.p_sample_loop(
cond,
shape,
return_intermediates=return_intermediates,
x_T=x_T,
verbose=verbose,
timesteps=timesteps,
quantize_denoised=quantize_denoised,
mask=mask,
x0=x0,
)
@torch.no_grad()
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
if ddim:
ddim_sampler = DDIMSampler(self)
shape = (self.channels, self.image_size, self.image_size)
samples, intermediates = ddim_sampler.sample(
ddim_steps, batch_size, shape, cond, verbose=False, **kwargs
)
else:
samples, intermediates = self.sample(
cond=cond,
batch_size=batch_size,
return_intermediates=True,
**kwargs,
)
return samples, intermediates
@torch.no_grad()
def get_unconditional_conditioning(self, batch_size, null_label=None):
if null_label is not None:
xc = null_label
if isinstance(xc, ListConfig):
xc = list(xc)
if isinstance(xc, dict) or isinstance(xc, list):
c = self.get_learned_conditioning(xc)
else:
if hasattr(xc, "to"):
xc = xc.to(self.device)
c = self.get_learned_conditioning(xc)
else:
# todo: get null label from cond_stage_model
raise NotImplementedError()
c = repeat(c, "1 ... -> b ...", b=batch_size).to(self.device)
return c
@torch.no_grad()
def log_images(
self,
batch,
N=8,
n_row=4,
sample=True,
ddim_steps=50,
ddim_eta=1.0,
return_keys=None,
quantize_denoised=True,
inpaint=False,
plot_denoise_rows=False,
plot_progressive_rows=False,
plot_diffusion_rows=False,
**kwargs,
):
use_ddim = ddim_steps is not None
log = dict()
z, c, x, xrec, xc = self.get_input(
batch,
self.first_stage_key,
return_first_stage_outputs=True,
force_c_encode=True,
return_original_cond=True,
bs=N,
)
N = min(x.shape[0], N)
n_row = min(x.shape[0], n_row)
log['inputs'] = x
log['reconstruction'] = xrec
if self.model.conditioning_key is not None:
if hasattr(self.cond_stage_model, 'decode'):
xc = self.cond_stage_model.decode(c)
log['conditioning'] = xc
elif self.cond_stage_key in ['caption']:
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch['caption'])
log['conditioning'] = xc
elif self.cond_stage_key == 'class_label':
xc = log_txt_as_img(
(x.shape[2], x.shape[3]), batch['human_label']
)
log['conditioning'] = xc
elif isimage(xc):
log['conditioning'] = xc
if ismap(xc):
log['original_conditioning'] = self.to_rgb(xc)
if plot_diffusion_rows:
# get diffusion row
diffusion_row = list()
z_start = z[:n_row]
for t in range(self.num_timesteps):
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
t = t.to(self.device).long()
noise = torch.randn_like(z_start)
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
diffusion_row.append(self.decode_first_stage(z_noisy))
diffusion_row = torch.stack(
diffusion_row
) # n_log_step, n_row, C, H, W
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
diffusion_grid = rearrange(
diffusion_grid, 'b n c h w -> (b n) c h w'
)
diffusion_grid = make_grid(
diffusion_grid, nrow=diffusion_row.shape[0]
)
log['diffusion_row'] = diffusion_grid
if sample:
# get denoise row
with self.ema_scope('Plotting'):
samples, z_denoise_row = self.sample_log(
cond=c,
batch_size=N,
ddim=use_ddim,
ddim_steps=ddim_steps,
eta=ddim_eta,
)
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
x_samples = self.decode_first_stage(samples)
log['samples'] = x_samples
if plot_denoise_rows:
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
log['denoise_row'] = denoise_grid
uc = self.get_learned_conditioning(len(c) * [''])
sample_scaled, _ = self.sample_log(
cond=c,
batch_size=N,
ddim=use_ddim,
ddim_steps=ddim_steps,
eta=ddim_eta,
unconditional_guidance_scale=5.0,
unconditional_conditioning=uc,
)
log['samples_scaled'] = self.decode_first_stage(sample_scaled)
if (
quantize_denoised
and not isinstance(self.first_stage_model, AutoencoderKL)
and not isinstance(self.first_stage_model, IdentityFirstStage)
):
# also display when quantizing x0 while sampling
with self.ema_scope('Plotting Quantized Denoised'):
samples, z_denoise_row = self.sample_log(
cond=c,
batch_size=N,
ddim=use_ddim,
ddim_steps=ddim_steps,
eta=ddim_eta,
quantize_denoised=True,
)
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
# quantize_denoised=True)
x_samples = self.decode_first_stage(samples.to(self.device))
log['samples_x0_quantized'] = x_samples
if inpaint:
# make a simple center square
b, h, w = z.shape[0], z.shape[2], z.shape[3]
mask = torch.ones(N, h, w).to(self.device)
# zeros will be filled in
mask[:, h // 4 : 3 * h // 4, w // 4 : 3 * w // 4] = 0.0
mask = mask[:, None, ...]
with self.ema_scope('Plotting Inpaint'):
samples, _ = self.sample_log(
cond=c,
batch_size=N,
ddim=use_ddim,
eta=ddim_eta,
ddim_steps=ddim_steps,
x0=z[:N],
mask=mask,
)
x_samples = self.decode_first_stage(samples.to(self.device))
log['samples_inpainting'] = x_samples
log['mask'] = mask
# outpaint
with self.ema_scope('Plotting Outpaint'):
samples, _ = self.sample_log(
cond=c,
batch_size=N,
ddim=use_ddim,
eta=ddim_eta,
ddim_steps=ddim_steps,
x0=z[:N],
mask=mask,
)
x_samples = self.decode_first_stage(samples.to(self.device))
log['samples_outpainting'] = x_samples
if plot_progressive_rows:
with self.ema_scope('Plotting Progressives'):
img, progressives = self.progressive_denoising(
c,
shape=(self.channels, self.image_size, self.image_size),
batch_size=N,
)
prog_row = self._get_denoise_row_from_list(
progressives, desc='Progressive Generation'
)
log['progressive_row'] = prog_row
if return_keys:
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
return log
else:
return {key: log[key] for key in return_keys}
return log
def configure_optimizers(self):
lr = self.learning_rate
if self.embedding_manager is not None:
params = list(self.embedding_manager.embedding_parameters())
# params = list(self.cond_stage_model.transformer.text_model.embeddings.embedding_manager.embedding_parameters())
else:
params = list(self.model.parameters())
if self.cond_stage_trainable:
print(
f'{self.__class__.__name__}: Also optimizing conditioner params!'
)
params = params + list(self.cond_stage_model.parameters())
if self.learn_logvar:
print('Diffusion model optimizing logvar')
params.append(self.logvar)
opt = torch.optim.AdamW(params, lr=lr)
if self.use_scheduler:
assert 'target' in self.scheduler_config
scheduler = instantiate_from_config(self.scheduler_config)
print('Setting up LambdaLR scheduler...')
scheduler = [
{
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
'interval': 'step',
'frequency': 1,
}
]
return [opt], scheduler
return opt
@torch.no_grad()
def to_rgb(self, x):
x = x.float()
if not hasattr(self, 'colorize'):
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
x = nn.functional.conv2d(x, weight=self.colorize)
x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
return x
@rank_zero_only
def on_save_checkpoint(self, checkpoint):
checkpoint.clear()
if os.path.isdir(self.trainer.checkpoint_callback.dirpath):
self.embedding_manager.save(
os.path.join(
self.trainer.checkpoint_callback.dirpath, 'embeddings.pt'
)
)
if (self.global_step - self.emb_ckpt_counter) > 500:
self.embedding_manager.save(
os.path.join(
self.trainer.checkpoint_callback.dirpath,
f'embeddings_gs-{self.global_step}.pt',
)
)
self.emb_ckpt_counter += 500
class DiffusionWrapper(pl.LightningModule):
def __init__(self, diff_model_config, conditioning_key):
super().__init__()
self.diffusion_model = instantiate_from_config(diff_model_config)
self.conditioning_key = conditioning_key
assert self.conditioning_key in [
None,
'concat',
'crossattn',
'hybrid',
'adm',
]
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None):
if self.conditioning_key is None:
out = self.diffusion_model(x, t)
elif self.conditioning_key == 'concat':
xc = torch.cat([x] + c_concat, dim=1)
out = self.diffusion_model(xc, t)
elif self.conditioning_key == 'crossattn':
cc = torch.cat(c_crossattn, 1)
out = self.diffusion_model(x, t, context=cc)
elif self.conditioning_key == 'hybrid':
cc = torch.cat(c_crossattn, 1)
xc = torch.cat([x] + c_concat, dim=1)
out = self.diffusion_model(xc, t, context=cc)
elif self.conditioning_key == 'adm':
cc = c_crossattn[0]
out = self.diffusion_model(x, t, y=cc)
else:
raise NotImplementedError()
return out
class Layout2ImgDiffusion(LatentDiffusion):
# TODO: move all layout-specific hacks to this class
def __init__(self, cond_stage_key, *args, **kwargs):
assert (
cond_stage_key == 'coordinates_bbox'
), 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
def log_images(self, batch, N=8, *args, **kwargs):
logs = super().log_images(batch=batch, N=N, *args, **kwargs)
key = 'train' if self.training else 'validation'
dset = self.trainer.datamodule.datasets[key]
mapper = dset.conditional_builders[self.cond_stage_key]
bbox_imgs = []
map_fn = lambda catno: dset.get_textual_label(
dset.get_category_id(catno)
)
for tknzd_bbox in batch[self.cond_stage_key][:N]:
bboximg = mapper.plot(
tknzd_bbox.detach().cpu(), map_fn, (256, 256)
)
bbox_imgs.append(bboximg)
cond_img = torch.stack(bbox_imgs, dim=0)
logs['bbox_image'] = cond_img
return logs
class LatentInpaintDiffusion(LatentDiffusion):
def __init__(
self,
concat_keys=("mask", "masked_image"),
masked_image_key="masked_image",
finetune_keys=None,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.masked_image_key = masked_image_key
assert self.masked_image_key in concat_keys
self.concat_keys = concat_keys
@torch.no_grad()
def get_input(
self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False
):
# note: restricted to non-trainable encoders currently
assert (
not self.cond_stage_trainable
), "trainable cond stages not yet supported for inpainting"
z, c, x, xrec, xc = super().get_input(
batch,
self.first_stage_key,
return_first_stage_outputs=True,
force_c_encode=True,
return_original_cond=True,
bs=bs,
)
assert exists(self.concat_keys)
c_cat = list()
for ck in self.concat_keys:
cc = (
rearrange(batch[ck], "b h w c -> b c h w")
.to(memory_format=torch.contiguous_format)
.float()
)
if bs is not None:
cc = cc[:bs]
cc = cc.to(self.device)
bchw = z.shape
if ck != self.masked_image_key:
cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
else:
cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
c_cat.append(cc)
c_cat = torch.cat(c_cat, dim=1)
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
if return_first_stage_outputs:
return z, all_conds, x, xrec, xc
return z, all_conds