mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
596 lines
22 KiB
Python
596 lines
22 KiB
Python
"""
|
|
Migrate the models directory and models.yaml file from an existing
|
|
InvokeAI 2.3 installation to 3.0.0.
|
|
"""
|
|
|
|
import argparse
|
|
import os
|
|
import shutil
|
|
import warnings
|
|
from dataclasses import dataclass
|
|
from pathlib import Path
|
|
from typing import Union
|
|
|
|
import diffusers
|
|
import transformers
|
|
import yaml
|
|
from diffusers import AutoencoderKL, StableDiffusionPipeline
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
|
from omegaconf import DictConfig, OmegaConf
|
|
from transformers import AutoFeatureExtractor, BertTokenizerFast, CLIPTextModel, CLIPTokenizer
|
|
|
|
import invokeai.backend.util.logging as logger
|
|
from invokeai.app.services.config import InvokeAIAppConfig
|
|
from invokeai.backend.model_management import ModelManager
|
|
from invokeai.backend.model_management.model_probe import BaseModelType, ModelProbe, ModelProbeInfo, ModelType
|
|
|
|
warnings.filterwarnings("ignore")
|
|
transformers.logging.set_verbosity_error()
|
|
diffusers.logging.set_verbosity_error()
|
|
|
|
|
|
# holder for paths that we will migrate
|
|
@dataclass
|
|
class ModelPaths:
|
|
models: Path
|
|
embeddings: Path
|
|
loras: Path
|
|
controlnets: Path
|
|
|
|
|
|
class MigrateTo3(object):
|
|
def __init__(
|
|
self,
|
|
from_root: Path,
|
|
to_models: Path,
|
|
model_manager: ModelManager,
|
|
src_paths: ModelPaths,
|
|
):
|
|
self.root_directory = from_root
|
|
self.dest_models = to_models
|
|
self.mgr = model_manager
|
|
self.src_paths = src_paths
|
|
|
|
@classmethod
|
|
def initialize_yaml(cls, yaml_file: Path):
|
|
with open(yaml_file, "w") as file:
|
|
file.write(yaml.dump({"__metadata__": {"version": "3.0.0"}}))
|
|
|
|
def create_directory_structure(self):
|
|
"""
|
|
Create the basic directory structure for the models folder.
|
|
"""
|
|
for model_base in [BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2]:
|
|
for model_type in [
|
|
ModelType.Main,
|
|
ModelType.Vae,
|
|
ModelType.Lora,
|
|
ModelType.ControlNet,
|
|
ModelType.TextualInversion,
|
|
]:
|
|
path = self.dest_models / model_base.value / model_type.value
|
|
path.mkdir(parents=True, exist_ok=True)
|
|
path = self.dest_models / "core"
|
|
path.mkdir(parents=True, exist_ok=True)
|
|
|
|
@staticmethod
|
|
def copy_file(src: Path, dest: Path):
|
|
"""
|
|
copy a single file with logging
|
|
"""
|
|
if dest.exists():
|
|
logger.info(f"Skipping existing {str(dest)}")
|
|
return
|
|
logger.info(f"Copying {str(src)} to {str(dest)}")
|
|
try:
|
|
shutil.copy(src, dest)
|
|
except Exception as e:
|
|
logger.error(f"COPY FAILED: {str(e)}")
|
|
|
|
@staticmethod
|
|
def copy_dir(src: Path, dest: Path):
|
|
"""
|
|
Recursively copy a directory with logging
|
|
"""
|
|
if dest.exists():
|
|
logger.info(f"Skipping existing {str(dest)}")
|
|
return
|
|
|
|
logger.info(f"Copying {str(src)} to {str(dest)}")
|
|
try:
|
|
shutil.copytree(src, dest)
|
|
except Exception as e:
|
|
logger.error(f"COPY FAILED: {str(e)}")
|
|
|
|
def migrate_models(self, src_dir: Path):
|
|
"""
|
|
Recursively walk through src directory, probe anything
|
|
that looks like a model, and copy the model into the
|
|
appropriate location within the destination models directory.
|
|
"""
|
|
directories_scanned = set()
|
|
for root, dirs, files in os.walk(src_dir, followlinks=True):
|
|
for d in dirs:
|
|
try:
|
|
model = Path(root, d)
|
|
info = ModelProbe().heuristic_probe(model)
|
|
if not info:
|
|
continue
|
|
dest = self._model_probe_to_path(info) / model.name
|
|
self.copy_dir(model, dest)
|
|
directories_scanned.add(model)
|
|
except Exception as e:
|
|
logger.error(str(e))
|
|
except KeyboardInterrupt:
|
|
raise
|
|
except Exception as e:
|
|
logger.error(str(e))
|
|
for f in files:
|
|
# don't copy raw learned_embeds.bin or pytorch_lora_weights.bin
|
|
# let them be copied as part of a tree copy operation
|
|
try:
|
|
if f in {"learned_embeds.bin", "pytorch_lora_weights.bin"}:
|
|
continue
|
|
model = Path(root, f)
|
|
if model.parent in directories_scanned:
|
|
continue
|
|
info = ModelProbe().heuristic_probe(model)
|
|
if not info:
|
|
continue
|
|
dest = self._model_probe_to_path(info) / f
|
|
self.copy_file(model, dest)
|
|
except Exception as e:
|
|
logger.error(str(e))
|
|
except KeyboardInterrupt:
|
|
raise
|
|
except Exception as e:
|
|
logger.error(str(e))
|
|
|
|
def migrate_support_models(self):
|
|
"""
|
|
Copy the clipseg, upscaler, and restoration models to their new
|
|
locations.
|
|
"""
|
|
dest_directory = self.dest_models
|
|
if (self.root_directory / "models/clipseg").exists():
|
|
self.copy_dir(self.root_directory / "models/clipseg", dest_directory / "core/misc/clipseg")
|
|
if (self.root_directory / "models/realesrgan").exists():
|
|
self.copy_dir(self.root_directory / "models/realesrgan", dest_directory / "core/upscaling/realesrgan")
|
|
for d in ["codeformer", "gfpgan"]:
|
|
path = self.root_directory / "models" / d
|
|
if path.exists():
|
|
self.copy_dir(path, dest_directory / f"core/face_restoration/{d}")
|
|
|
|
def migrate_tuning_models(self):
|
|
"""
|
|
Migrate the embeddings, loras and controlnets directories to their new homes.
|
|
"""
|
|
for src in [self.src_paths.embeddings, self.src_paths.loras, self.src_paths.controlnets]:
|
|
if not src:
|
|
continue
|
|
if src.is_dir():
|
|
logger.info(f"Scanning {src}")
|
|
self.migrate_models(src)
|
|
else:
|
|
logger.info(f"{src} directory not found; skipping")
|
|
continue
|
|
|
|
def migrate_conversion_models(self):
|
|
"""
|
|
Migrate all the models that are needed by the ckpt_to_diffusers conversion
|
|
script.
|
|
"""
|
|
|
|
dest_directory = self.dest_models
|
|
kwargs = dict(
|
|
cache_dir=self.root_directory / "models/hub",
|
|
# local_files_only = True
|
|
)
|
|
try:
|
|
logger.info("Migrating core tokenizers and text encoders")
|
|
target_dir = dest_directory / "core" / "convert"
|
|
|
|
self._migrate_pretrained(
|
|
BertTokenizerFast, repo_id="bert-base-uncased", dest=target_dir / "bert-base-uncased", **kwargs
|
|
)
|
|
|
|
# sd-1
|
|
repo_id = "openai/clip-vit-large-patch14"
|
|
self._migrate_pretrained(
|
|
CLIPTokenizer, repo_id=repo_id, dest=target_dir / "clip-vit-large-patch14", **kwargs
|
|
)
|
|
self._migrate_pretrained(
|
|
CLIPTextModel, repo_id=repo_id, dest=target_dir / "clip-vit-large-patch14", force=True, **kwargs
|
|
)
|
|
|
|
# sd-2
|
|
repo_id = "stabilityai/stable-diffusion-2"
|
|
self._migrate_pretrained(
|
|
CLIPTokenizer,
|
|
repo_id=repo_id,
|
|
dest=target_dir / "stable-diffusion-2-clip" / "tokenizer",
|
|
**{"subfolder": "tokenizer", **kwargs},
|
|
)
|
|
self._migrate_pretrained(
|
|
CLIPTextModel,
|
|
repo_id=repo_id,
|
|
dest=target_dir / "stable-diffusion-2-clip" / "text_encoder",
|
|
**{"subfolder": "text_encoder", **kwargs},
|
|
)
|
|
|
|
# VAE
|
|
logger.info("Migrating stable diffusion VAE")
|
|
self._migrate_pretrained(
|
|
AutoencoderKL, repo_id="stabilityai/sd-vae-ft-mse", dest=target_dir / "sd-vae-ft-mse", **kwargs
|
|
)
|
|
|
|
# safety checking
|
|
logger.info("Migrating safety checker")
|
|
repo_id = "CompVis/stable-diffusion-safety-checker"
|
|
self._migrate_pretrained(
|
|
AutoFeatureExtractor, repo_id=repo_id, dest=target_dir / "stable-diffusion-safety-checker", **kwargs
|
|
)
|
|
self._migrate_pretrained(
|
|
StableDiffusionSafetyChecker,
|
|
repo_id=repo_id,
|
|
dest=target_dir / "stable-diffusion-safety-checker",
|
|
**kwargs,
|
|
)
|
|
except KeyboardInterrupt:
|
|
raise
|
|
except Exception as e:
|
|
logger.error(str(e))
|
|
|
|
def _model_probe_to_path(self, info: ModelProbeInfo) -> Path:
|
|
return Path(self.dest_models, info.base_type.value, info.model_type.value)
|
|
|
|
def _migrate_pretrained(self, model_class, repo_id: str, dest: Path, force: bool = False, **kwargs):
|
|
if dest.exists() and not force:
|
|
logger.info(f"Skipping existing {dest}")
|
|
return
|
|
model = model_class.from_pretrained(repo_id, **kwargs)
|
|
self._save_pretrained(model, dest, overwrite=force)
|
|
|
|
def _save_pretrained(self, model, dest: Path, overwrite: bool = False):
|
|
model_name = dest.name
|
|
if overwrite:
|
|
model.save_pretrained(dest, safe_serialization=True)
|
|
else:
|
|
download_path = dest.with_name(f"{model_name}.downloading")
|
|
model.save_pretrained(download_path, safe_serialization=True)
|
|
download_path.replace(dest)
|
|
|
|
def _download_vae(self, repo_id: str, subfolder: str = None) -> Path:
|
|
vae = AutoencoderKL.from_pretrained(repo_id, cache_dir=self.root_directory / "models/hub", subfolder=subfolder)
|
|
info = ModelProbe().heuristic_probe(vae)
|
|
_, model_name = repo_id.split("/")
|
|
dest = self._model_probe_to_path(info) / self.unique_name(model_name, info)
|
|
vae.save_pretrained(dest, safe_serialization=True)
|
|
return dest
|
|
|
|
def _vae_path(self, vae: Union[str, dict]) -> Path:
|
|
"""
|
|
Convert 2.3 VAE stanza to a straight path.
|
|
"""
|
|
vae_path = None
|
|
|
|
# First get a path
|
|
if isinstance(vae, str):
|
|
vae_path = vae
|
|
|
|
elif isinstance(vae, DictConfig):
|
|
if p := vae.get("path"):
|
|
vae_path = p
|
|
elif repo_id := vae.get("repo_id"):
|
|
if repo_id == "stabilityai/sd-vae-ft-mse": # this guy is already downloaded
|
|
vae_path = "models/core/convert/sd-vae-ft-mse"
|
|
return vae_path
|
|
else:
|
|
vae_path = self._download_vae(repo_id, vae.get("subfolder"))
|
|
|
|
assert vae_path is not None, "Couldn't find VAE for this model"
|
|
|
|
# if the VAE is in the old models directory, then we must move it into the new
|
|
# one. VAEs outside of this directory can stay where they are.
|
|
vae_path = Path(vae_path)
|
|
if vae_path.is_relative_to(self.src_paths.models):
|
|
info = ModelProbe().heuristic_probe(vae_path)
|
|
dest = self._model_probe_to_path(info) / vae_path.name
|
|
if not dest.exists():
|
|
if vae_path.is_dir():
|
|
self.copy_dir(vae_path, dest)
|
|
else:
|
|
self.copy_file(vae_path, dest)
|
|
vae_path = dest
|
|
|
|
if vae_path.is_relative_to(self.dest_models):
|
|
rel_path = vae_path.relative_to(self.dest_models)
|
|
return Path("models", rel_path)
|
|
else:
|
|
return vae_path
|
|
|
|
def migrate_repo_id(self, repo_id: str, model_name: str = None, **extra_config):
|
|
"""
|
|
Migrate a locally-cached diffusers pipeline identified with a repo_id
|
|
"""
|
|
dest_dir = self.dest_models
|
|
|
|
cache = self.root_directory / "models/hub"
|
|
kwargs = dict(
|
|
cache_dir=cache,
|
|
safety_checker=None,
|
|
# local_files_only = True,
|
|
)
|
|
|
|
owner, repo_name = repo_id.split("/")
|
|
model_name = model_name or repo_name
|
|
model = cache / "--".join(["models", owner, repo_name])
|
|
|
|
if len(list(model.glob("snapshots/**/model_index.json"))) == 0:
|
|
return
|
|
revisions = [x.name for x in model.glob("refs/*")]
|
|
|
|
# if an fp16 is available we use that
|
|
revision = "fp16" if len(revisions) > 1 and "fp16" in revisions else revisions[0]
|
|
pipeline = StableDiffusionPipeline.from_pretrained(repo_id, revision=revision, **kwargs)
|
|
|
|
info = ModelProbe().heuristic_probe(pipeline)
|
|
if not info:
|
|
return
|
|
|
|
if self.mgr.model_exists(model_name, info.base_type, info.model_type):
|
|
logger.warning(f"A model named {model_name} already exists at the destination. Skipping migration.")
|
|
return
|
|
|
|
dest = self._model_probe_to_path(info) / model_name
|
|
self._save_pretrained(pipeline, dest)
|
|
|
|
rel_path = Path("models", dest.relative_to(dest_dir))
|
|
self._add_model(model_name, info, rel_path, **extra_config)
|
|
|
|
def migrate_path(self, location: Path, model_name: str = None, **extra_config):
|
|
"""
|
|
Migrate a model referred to using 'weights' or 'path'
|
|
"""
|
|
|
|
# handle relative paths
|
|
dest_dir = self.dest_models
|
|
location = self.root_directory / location
|
|
model_name = model_name or location.stem
|
|
|
|
info = ModelProbe().heuristic_probe(location)
|
|
if not info:
|
|
return
|
|
|
|
if self.mgr.model_exists(model_name, info.base_type, info.model_type):
|
|
logger.warning(f"A model named {model_name} already exists at the destination. Skipping migration.")
|
|
return
|
|
|
|
# uh oh, weights is in the old models directory - move it into the new one
|
|
if Path(location).is_relative_to(self.src_paths.models):
|
|
dest = Path(dest_dir, info.base_type.value, info.model_type.value, location.name)
|
|
if location.is_dir():
|
|
self.copy_dir(location, dest)
|
|
else:
|
|
self.copy_file(location, dest)
|
|
location = Path("models", info.base_type.value, info.model_type.value, location.name)
|
|
|
|
self._add_model(model_name, info, location, **extra_config)
|
|
|
|
def _add_model(self, model_name: str, info: ModelProbeInfo, location: Path, **extra_config):
|
|
if info.model_type != ModelType.Main:
|
|
return
|
|
|
|
self.mgr.add_model(
|
|
model_name=model_name,
|
|
base_model=info.base_type,
|
|
model_type=info.model_type,
|
|
clobber=True,
|
|
model_attributes={
|
|
"path": str(location),
|
|
"description": f"A {info.base_type.value} {info.model_type.value} model",
|
|
"model_format": info.format,
|
|
"variant": info.variant_type.value,
|
|
**extra_config,
|
|
},
|
|
)
|
|
|
|
def migrate_defined_models(self):
|
|
"""
|
|
Migrate models defined in models.yaml
|
|
"""
|
|
# find any models referred to in old models.yaml
|
|
conf = OmegaConf.load(self.root_directory / "configs/models.yaml")
|
|
|
|
for model_name, stanza in conf.items():
|
|
try:
|
|
passthru_args = {}
|
|
|
|
if vae := stanza.get("vae"):
|
|
try:
|
|
passthru_args["vae"] = str(self._vae_path(vae))
|
|
except Exception as e:
|
|
logger.warning(f'Could not find a VAE matching "{vae}" for model "{model_name}"')
|
|
logger.warning(str(e))
|
|
|
|
if config := stanza.get("config"):
|
|
passthru_args["config"] = config
|
|
|
|
if description := stanza.get("description"):
|
|
passthru_args["description"] = description
|
|
|
|
if repo_id := stanza.get("repo_id"):
|
|
logger.info(f"Migrating diffusers model {model_name}")
|
|
self.migrate_repo_id(repo_id, model_name, **passthru_args)
|
|
|
|
elif location := stanza.get("weights"):
|
|
logger.info(f"Migrating checkpoint model {model_name}")
|
|
self.migrate_path(Path(location), model_name, **passthru_args)
|
|
|
|
elif location := stanza.get("path"):
|
|
logger.info(f"Migrating diffusers model {model_name}")
|
|
self.migrate_path(Path(location), model_name, **passthru_args)
|
|
|
|
except KeyboardInterrupt:
|
|
raise
|
|
except Exception as e:
|
|
logger.error(str(e))
|
|
|
|
def migrate(self):
|
|
self.create_directory_structure()
|
|
# the configure script is doing this
|
|
self.migrate_support_models()
|
|
self.migrate_conversion_models()
|
|
self.migrate_tuning_models()
|
|
self.migrate_defined_models()
|
|
|
|
|
|
def _parse_legacy_initfile(root: Path, initfile: Path) -> ModelPaths:
|
|
"""
|
|
Returns tuple of (embedding_path, lora_path, controlnet_path)
|
|
"""
|
|
parser = argparse.ArgumentParser(fromfile_prefix_chars="@")
|
|
parser.add_argument(
|
|
"--embedding_directory",
|
|
"--embedding_path",
|
|
type=Path,
|
|
dest="embedding_path",
|
|
default=Path("embeddings"),
|
|
)
|
|
parser.add_argument(
|
|
"--lora_directory",
|
|
dest="lora_path",
|
|
type=Path,
|
|
default=Path("loras"),
|
|
)
|
|
opt, _ = parser.parse_known_args([f"@{str(initfile)}"])
|
|
return ModelPaths(
|
|
models=root / "models",
|
|
embeddings=root / str(opt.embedding_path).strip('"'),
|
|
loras=root / str(opt.lora_path).strip('"'),
|
|
controlnets=root / "controlnets",
|
|
)
|
|
|
|
|
|
def _parse_legacy_yamlfile(root: Path, initfile: Path) -> ModelPaths:
|
|
"""
|
|
Returns tuple of (embedding_path, lora_path, controlnet_path)
|
|
"""
|
|
# Don't use the config object because it is unforgiving of version updates
|
|
# Just use omegaconf directly
|
|
opt = OmegaConf.load(initfile)
|
|
paths = opt.InvokeAI.Paths
|
|
models = paths.get("models_dir", "models")
|
|
embeddings = paths.get("embedding_dir", "embeddings")
|
|
loras = paths.get("lora_dir", "loras")
|
|
controlnets = paths.get("controlnet_dir", "controlnets")
|
|
return ModelPaths(
|
|
models=root / models if models else None,
|
|
embeddings=root / embeddings if embeddings else None,
|
|
loras=root / loras if loras else None,
|
|
controlnets=root / controlnets if controlnets else None,
|
|
)
|
|
|
|
|
|
def get_legacy_embeddings(root: Path) -> ModelPaths:
|
|
path = root / "invokeai.init"
|
|
if path.exists():
|
|
return _parse_legacy_initfile(root, path)
|
|
path = root / "invokeai.yaml"
|
|
if path.exists():
|
|
return _parse_legacy_yamlfile(root, path)
|
|
|
|
|
|
def do_migrate(src_directory: Path, dest_directory: Path):
|
|
"""
|
|
Migrate models from src to dest InvokeAI root directories
|
|
"""
|
|
config_file = dest_directory / "configs" / "models.yaml.3"
|
|
dest_models = dest_directory / "models.3"
|
|
|
|
version_3 = (dest_directory / "models" / "core").exists()
|
|
|
|
# Here we create the destination models.yaml file.
|
|
# If we are writing into a version 3 directory and the
|
|
# file already exists, then we write into a copy of it to
|
|
# avoid deleting its previous customizations. Otherwise we
|
|
# create a new empty one.
|
|
if version_3: # write into the dest directory
|
|
try:
|
|
shutil.copy(dest_directory / "configs" / "models.yaml", config_file)
|
|
except Exception:
|
|
MigrateTo3.initialize_yaml(config_file)
|
|
mgr = ModelManager(config_file) # important to initialize BEFORE moving the models directory
|
|
(dest_directory / "models").replace(dest_models)
|
|
else:
|
|
MigrateTo3.initialize_yaml(config_file)
|
|
mgr = ModelManager(config_file)
|
|
|
|
paths = get_legacy_embeddings(src_directory)
|
|
migrator = MigrateTo3(from_root=src_directory, to_models=dest_models, model_manager=mgr, src_paths=paths)
|
|
migrator.migrate()
|
|
print("Migration successful.")
|
|
|
|
if not version_3:
|
|
(dest_directory / "models").replace(src_directory / "models.orig")
|
|
print(f"Original models directory moved to {dest_directory}/models.orig")
|
|
|
|
(dest_directory / "configs" / "models.yaml").replace(src_directory / "configs" / "models.yaml.orig")
|
|
print(f"Original models.yaml file moved to {dest_directory}/configs/models.yaml.orig")
|
|
|
|
config_file.replace(config_file.with_suffix(""))
|
|
dest_models.replace(dest_models.with_suffix(""))
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(
|
|
prog="invokeai-migrate3",
|
|
description="""
|
|
This will copy and convert the models directory and the configs/models.yaml from the InvokeAI 2.3 format
|
|
'--from-directory' root to the InvokeAI 3.0 '--to-directory' root. These may be abbreviated '--from' and '--to'.a
|
|
|
|
The old models directory and config file will be renamed 'models.orig' and 'models.yaml.orig' respectively.
|
|
It is safe to provide the same directory for both arguments, but it is better to use the invokeai_configure
|
|
script, which will perform a full upgrade in place.""",
|
|
)
|
|
parser.add_argument(
|
|
"--from-directory",
|
|
dest="src_root",
|
|
type=Path,
|
|
required=True,
|
|
help='Source InvokeAI 2.3 root directory (containing "invokeai.init" or "invokeai.yaml")',
|
|
)
|
|
parser.add_argument(
|
|
"--to-directory",
|
|
dest="dest_root",
|
|
type=Path,
|
|
required=True,
|
|
help='Destination InvokeAI 3.0 directory (containing "invokeai.yaml")',
|
|
)
|
|
args = parser.parse_args()
|
|
src_root = args.src_root
|
|
assert src_root.is_dir(), f"{src_root} is not a valid directory"
|
|
assert (src_root / "models").is_dir(), f"{src_root} does not contain a 'models' subdirectory"
|
|
assert (src_root / "models" / "hub").exists(), f"{src_root} does not contain a version 2.3 models directory"
|
|
assert (src_root / "invokeai.init").exists() or (
|
|
src_root / "invokeai.yaml"
|
|
).exists(), f"{src_root} does not contain an InvokeAI init file."
|
|
|
|
dest_root = args.dest_root
|
|
assert dest_root.is_dir(), f"{dest_root} is not a valid directory"
|
|
config = InvokeAIAppConfig.get_config()
|
|
config.parse_args(["--root", str(dest_root)])
|
|
|
|
# TODO: revisit - don't rely on invokeai.yaml to exist yet!
|
|
dest_is_setup = (dest_root / "models/core").exists() and (dest_root / "databases").exists()
|
|
if not dest_is_setup:
|
|
from invokeai.backend.install.invokeai_configure import initialize_rootdir
|
|
|
|
initialize_rootdir(dest_root, True)
|
|
|
|
do_migrate(src_root, dest_root)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|