mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
5a3195f757
- Replace AnyModelLoader with ModelLoaderRegistry - Fix type check errors in multiple files - Remove apparently unneeded `get_model_config_enum()` method from model manager - Remove last vestiges of old model manager - Updated tests and documentation resolve conflict with seamless.py
760 lines
28 KiB
Python
760 lines
28 KiB
Python
# Copyright (c) 2023 Lincoln D. Stein
|
|
"""FastAPI route for model configuration records."""
|
|
|
|
import pathlib
|
|
import shutil
|
|
from hashlib import sha1
|
|
from random import randbytes
|
|
from typing import Any, Dict, List, Optional, Set
|
|
|
|
from fastapi import Body, Path, Query, Response
|
|
from fastapi.routing import APIRouter
|
|
from pydantic import BaseModel, ConfigDict
|
|
from starlette.exceptions import HTTPException
|
|
from typing_extensions import Annotated
|
|
|
|
from invokeai.app.services.model_install import ModelInstallJob, ModelSource
|
|
from invokeai.app.services.model_records import (
|
|
DuplicateModelException,
|
|
InvalidModelException,
|
|
ModelRecordOrderBy,
|
|
ModelSummary,
|
|
UnknownModelException,
|
|
)
|
|
from invokeai.app.services.shared.pagination import PaginatedResults
|
|
from invokeai.backend.model_manager.config import (
|
|
AnyModelConfig,
|
|
BaseModelType,
|
|
MainCheckpointConfig,
|
|
ModelFormat,
|
|
ModelType,
|
|
SubModelType,
|
|
)
|
|
from invokeai.backend.model_manager.merge import MergeInterpolationMethod, ModelMerger
|
|
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
|
|
|
|
from ..dependencies import ApiDependencies
|
|
|
|
model_manager_router = APIRouter(prefix="/v2/models", tags=["model_manager"])
|
|
|
|
|
|
class ModelsList(BaseModel):
|
|
"""Return list of configs."""
|
|
|
|
models: List[AnyModelConfig]
|
|
|
|
model_config = ConfigDict(use_enum_values=True)
|
|
|
|
|
|
class ModelTagSet(BaseModel):
|
|
"""Return tags for a set of models."""
|
|
|
|
key: str
|
|
name: str
|
|
author: str
|
|
tags: Set[str]
|
|
|
|
|
|
##############################################################################
|
|
# These are example inputs and outputs that are used in places where Swagger
|
|
# is unable to generate a correct example.
|
|
##############################################################################
|
|
example_model_config = {
|
|
"path": "string",
|
|
"name": "string",
|
|
"base": "sd-1",
|
|
"type": "main",
|
|
"format": "checkpoint",
|
|
"config": "string",
|
|
"key": "string",
|
|
"original_hash": "string",
|
|
"current_hash": "string",
|
|
"description": "string",
|
|
"source": "string",
|
|
"last_modified": 0,
|
|
"vae": "string",
|
|
"variant": "normal",
|
|
"prediction_type": "epsilon",
|
|
"repo_variant": "fp16",
|
|
"upcast_attention": False,
|
|
"ztsnr_training": False,
|
|
}
|
|
|
|
example_model_input = {
|
|
"path": "/path/to/model",
|
|
"name": "model_name",
|
|
"base": "sd-1",
|
|
"type": "main",
|
|
"format": "checkpoint",
|
|
"config": "configs/stable-diffusion/v1-inference.yaml",
|
|
"description": "Model description",
|
|
"vae": None,
|
|
"variant": "normal",
|
|
}
|
|
|
|
example_model_metadata = {
|
|
"name": "ip_adapter_sd_image_encoder",
|
|
"author": "InvokeAI",
|
|
"tags": [
|
|
"transformers",
|
|
"safetensors",
|
|
"clip_vision_model",
|
|
"endpoints_compatible",
|
|
"region:us",
|
|
"has_space",
|
|
"license:apache-2.0",
|
|
],
|
|
"files": [
|
|
{
|
|
"url": "https://huggingface.co/InvokeAI/ip_adapter_sd_image_encoder/resolve/main/README.md",
|
|
"path": "ip_adapter_sd_image_encoder/README.md",
|
|
"size": 628,
|
|
"sha256": None,
|
|
},
|
|
{
|
|
"url": "https://huggingface.co/InvokeAI/ip_adapter_sd_image_encoder/resolve/main/config.json",
|
|
"path": "ip_adapter_sd_image_encoder/config.json",
|
|
"size": 560,
|
|
"sha256": None,
|
|
},
|
|
{
|
|
"url": "https://huggingface.co/InvokeAI/ip_adapter_sd_image_encoder/resolve/main/model.safetensors",
|
|
"path": "ip_adapter_sd_image_encoder/model.safetensors",
|
|
"size": 2528373448,
|
|
"sha256": "6ca9667da1ca9e0b0f75e46bb030f7e011f44f86cbfb8d5a36590fcd7507b030",
|
|
},
|
|
],
|
|
"type": "huggingface",
|
|
"id": "InvokeAI/ip_adapter_sd_image_encoder",
|
|
"tag_dict": {"license": "apache-2.0"},
|
|
"last_modified": "2023-09-23T17:33:25Z",
|
|
}
|
|
|
|
##############################################################################
|
|
# ROUTES
|
|
##############################################################################
|
|
|
|
|
|
@model_manager_router.get(
|
|
"/",
|
|
operation_id="list_model_records",
|
|
)
|
|
async def list_model_records(
|
|
base_models: Optional[List[BaseModelType]] = Query(default=None, description="Base models to include"),
|
|
model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"),
|
|
model_name: Optional[str] = Query(default=None, description="Exact match on the name of the model"),
|
|
model_format: Optional[ModelFormat] = Query(
|
|
default=None, description="Exact match on the format of the model (e.g. 'diffusers')"
|
|
),
|
|
) -> ModelsList:
|
|
"""Get a list of models."""
|
|
record_store = ApiDependencies.invoker.services.model_manager.store
|
|
found_models: list[AnyModelConfig] = []
|
|
if base_models:
|
|
for base_model in base_models:
|
|
found_models.extend(
|
|
record_store.search_by_attr(
|
|
base_model=base_model, model_type=model_type, model_name=model_name, model_format=model_format
|
|
)
|
|
)
|
|
else:
|
|
found_models.extend(
|
|
record_store.search_by_attr(model_type=model_type, model_name=model_name, model_format=model_format)
|
|
)
|
|
return ModelsList(models=found_models)
|
|
|
|
|
|
@model_manager_router.get(
|
|
"/i/{key}",
|
|
operation_id="get_model_record",
|
|
responses={
|
|
200: {
|
|
"description": "The model configuration was retrieved successfully",
|
|
"content": {"application/json": {"example": example_model_config}},
|
|
},
|
|
400: {"description": "Bad request"},
|
|
404: {"description": "The model could not be found"},
|
|
},
|
|
)
|
|
async def get_model_record(
|
|
key: str = Path(description="Key of the model record to fetch."),
|
|
) -> AnyModelConfig:
|
|
"""Get a model record"""
|
|
record_store = ApiDependencies.invoker.services.model_manager.store
|
|
try:
|
|
config: AnyModelConfig = record_store.get_model(key)
|
|
return config
|
|
except UnknownModelException as e:
|
|
raise HTTPException(status_code=404, detail=str(e))
|
|
|
|
|
|
@model_manager_router.get("/summary", operation_id="list_model_summary")
|
|
async def list_model_summary(
|
|
page: int = Query(default=0, description="The page to get"),
|
|
per_page: int = Query(default=10, description="The number of models per page"),
|
|
order_by: ModelRecordOrderBy = Query(default=ModelRecordOrderBy.Default, description="The attribute to order by"),
|
|
) -> PaginatedResults[ModelSummary]:
|
|
"""Gets a page of model summary data."""
|
|
record_store = ApiDependencies.invoker.services.model_manager.store
|
|
results: PaginatedResults[ModelSummary] = record_store.list_models(page=page, per_page=per_page, order_by=order_by)
|
|
return results
|
|
|
|
|
|
@model_manager_router.get(
|
|
"/meta/i/{key}",
|
|
operation_id="get_model_metadata",
|
|
responses={
|
|
200: {
|
|
"description": "The model metadata was retrieved successfully",
|
|
"content": {"application/json": {"example": example_model_metadata}},
|
|
},
|
|
400: {"description": "Bad request"},
|
|
404: {"description": "No metadata available"},
|
|
},
|
|
)
|
|
async def get_model_metadata(
|
|
key: str = Path(description="Key of the model repo metadata to fetch."),
|
|
) -> Optional[AnyModelRepoMetadata]:
|
|
"""Get a model metadata object."""
|
|
record_store = ApiDependencies.invoker.services.model_manager.store
|
|
result: Optional[AnyModelRepoMetadata] = record_store.get_metadata(key)
|
|
if not result:
|
|
raise HTTPException(status_code=404, detail="No metadata for a model with this key")
|
|
return result
|
|
|
|
|
|
@model_manager_router.get(
|
|
"/tags",
|
|
operation_id="list_tags",
|
|
)
|
|
async def list_tags() -> Set[str]:
|
|
"""Get a unique set of all the model tags."""
|
|
record_store = ApiDependencies.invoker.services.model_manager.store
|
|
result: Set[str] = record_store.list_tags()
|
|
return result
|
|
|
|
|
|
@model_manager_router.get(
|
|
"/tags/search",
|
|
operation_id="search_by_metadata_tags",
|
|
)
|
|
async def search_by_metadata_tags(
|
|
tags: Set[str] = Query(default=None, description="Tags to search for"),
|
|
) -> ModelsList:
|
|
"""Get a list of models."""
|
|
record_store = ApiDependencies.invoker.services.model_manager.store
|
|
results = record_store.search_by_metadata_tag(tags)
|
|
return ModelsList(models=results)
|
|
|
|
|
|
@model_manager_router.patch(
|
|
"/i/{key}",
|
|
operation_id="update_model_record",
|
|
responses={
|
|
200: {
|
|
"description": "The model was updated successfully",
|
|
"content": {"application/json": {"example": example_model_config}},
|
|
},
|
|
400: {"description": "Bad request"},
|
|
404: {"description": "The model could not be found"},
|
|
409: {"description": "There is already a model corresponding to the new name"},
|
|
},
|
|
status_code=200,
|
|
)
|
|
async def update_model_record(
|
|
key: Annotated[str, Path(description="Unique key of model")],
|
|
info: Annotated[
|
|
AnyModelConfig, Body(description="Model config", discriminator="type", example=example_model_input)
|
|
],
|
|
) -> AnyModelConfig:
|
|
"""Update model contents with a new config. If the model name or base fields are changed, then the model is renamed."""
|
|
logger = ApiDependencies.invoker.services.logger
|
|
record_store = ApiDependencies.invoker.services.model_manager.store
|
|
try:
|
|
model_response: AnyModelConfig = record_store.update_model(key, config=info)
|
|
logger.info(f"Updated model: {key}")
|
|
except UnknownModelException as e:
|
|
raise HTTPException(status_code=404, detail=str(e))
|
|
except ValueError as e:
|
|
logger.error(str(e))
|
|
raise HTTPException(status_code=409, detail=str(e))
|
|
return model_response
|
|
|
|
|
|
@model_manager_router.delete(
|
|
"/i/{key}",
|
|
operation_id="del_model_record",
|
|
responses={
|
|
204: {"description": "Model deleted successfully"},
|
|
404: {"description": "Model not found"},
|
|
},
|
|
status_code=204,
|
|
)
|
|
async def del_model_record(
|
|
key: str = Path(description="Unique key of model to remove from model registry."),
|
|
) -> Response:
|
|
"""
|
|
Delete model record from database.
|
|
|
|
The configuration record will be removed. The corresponding weights files will be
|
|
deleted as well if they reside within the InvokeAI "models" directory.
|
|
"""
|
|
logger = ApiDependencies.invoker.services.logger
|
|
|
|
try:
|
|
installer = ApiDependencies.invoker.services.model_manager.install
|
|
installer.delete(key)
|
|
logger.info(f"Deleted model: {key}")
|
|
return Response(status_code=204)
|
|
except UnknownModelException as e:
|
|
logger.error(str(e))
|
|
raise HTTPException(status_code=404, detail=str(e))
|
|
|
|
|
|
@model_manager_router.post(
|
|
"/i/",
|
|
operation_id="add_model_record",
|
|
responses={
|
|
201: {
|
|
"description": "The model added successfully",
|
|
"content": {"application/json": {"example": example_model_config}},
|
|
},
|
|
409: {"description": "There is already a model corresponding to this path or repo_id"},
|
|
415: {"description": "Unrecognized file/folder format"},
|
|
},
|
|
status_code=201,
|
|
)
|
|
async def add_model_record(
|
|
config: Annotated[
|
|
AnyModelConfig, Body(description="Model config", discriminator="type", example=example_model_input)
|
|
],
|
|
) -> AnyModelConfig:
|
|
"""Add a model using the configuration information appropriate for its type."""
|
|
logger = ApiDependencies.invoker.services.logger
|
|
record_store = ApiDependencies.invoker.services.model_manager.store
|
|
if config.key == "<NOKEY>":
|
|
config.key = sha1(randbytes(100)).hexdigest()
|
|
logger.info(f"Created model {config.key} for {config.name}")
|
|
try:
|
|
record_store.add_model(config.key, config)
|
|
except DuplicateModelException as e:
|
|
logger.error(str(e))
|
|
raise HTTPException(status_code=409, detail=str(e))
|
|
except InvalidModelException as e:
|
|
logger.error(str(e))
|
|
raise HTTPException(status_code=415)
|
|
|
|
# now fetch it out
|
|
result: AnyModelConfig = record_store.get_model(config.key)
|
|
return result
|
|
|
|
|
|
@model_manager_router.post(
|
|
"/heuristic_import",
|
|
operation_id="heuristic_import_model",
|
|
responses={
|
|
201: {"description": "The model imported successfully"},
|
|
415: {"description": "Unrecognized file/folder format"},
|
|
424: {"description": "The model appeared to import successfully, but could not be found in the model manager"},
|
|
409: {"description": "There is already a model corresponding to this path or repo_id"},
|
|
},
|
|
status_code=201,
|
|
)
|
|
async def heuristic_import(
|
|
source: str,
|
|
config: Optional[Dict[str, Any]] = Body(
|
|
description="Dict of fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
|
|
default=None,
|
|
example={"name": "modelT", "description": "antique cars"},
|
|
),
|
|
access_token: Optional[str] = None,
|
|
) -> ModelInstallJob:
|
|
"""Install a model using a string identifier.
|
|
|
|
`source` can be any of the following.
|
|
|
|
1. A path on the local filesystem ('C:\\users\\fred\\model.safetensors')
|
|
2. A Url pointing to a single downloadable model file
|
|
3. A HuggingFace repo_id with any of the following formats:
|
|
- model/name
|
|
- model/name:fp16:vae
|
|
- model/name::vae -- use default precision
|
|
- model/name:fp16:path/to/model.safetensors
|
|
- model/name::path/to/model.safetensors
|
|
|
|
`config` is an optional dict containing model configuration values that will override
|
|
the ones that are probed automatically.
|
|
|
|
`access_token` is an optional access token for use with Urls that require
|
|
authentication.
|
|
|
|
Models will be downloaded, probed, configured and installed in a
|
|
series of background threads. The return object has `status` attribute
|
|
that can be used to monitor progress.
|
|
|
|
See the documentation for `import_model_record` for more information on
|
|
interpreting the job information returned by this route.
|
|
"""
|
|
logger = ApiDependencies.invoker.services.logger
|
|
|
|
try:
|
|
installer = ApiDependencies.invoker.services.model_manager.install
|
|
result: ModelInstallJob = installer.heuristic_import(
|
|
source=source,
|
|
config=config,
|
|
)
|
|
logger.info(f"Started installation of {source}")
|
|
except UnknownModelException as e:
|
|
logger.error(str(e))
|
|
raise HTTPException(status_code=424, detail=str(e))
|
|
except InvalidModelException as e:
|
|
logger.error(str(e))
|
|
raise HTTPException(status_code=415)
|
|
except ValueError as e:
|
|
logger.error(str(e))
|
|
raise HTTPException(status_code=409, detail=str(e))
|
|
return result
|
|
|
|
|
|
@model_manager_router.post(
|
|
"/install",
|
|
operation_id="import_model",
|
|
responses={
|
|
201: {"description": "The model imported successfully"},
|
|
415: {"description": "Unrecognized file/folder format"},
|
|
424: {"description": "The model appeared to import successfully, but could not be found in the model manager"},
|
|
409: {"description": "There is already a model corresponding to this path or repo_id"},
|
|
},
|
|
status_code=201,
|
|
)
|
|
async def import_model(
|
|
source: ModelSource,
|
|
config: Optional[Dict[str, Any]] = Body(
|
|
description="Dict of fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
|
|
default=None,
|
|
),
|
|
) -> ModelInstallJob:
|
|
"""Install a model using its local path, repo_id, or remote URL.
|
|
|
|
Models will be downloaded, probed, configured and installed in a
|
|
series of background threads. The return object has `status` attribute
|
|
that can be used to monitor progress.
|
|
|
|
The source object is a discriminated Union of LocalModelSource,
|
|
HFModelSource and URLModelSource. Set the "type" field to the
|
|
appropriate value:
|
|
|
|
* To install a local path using LocalModelSource, pass a source of form:
|
|
```
|
|
{
|
|
"type": "local",
|
|
"path": "/path/to/model",
|
|
"inplace": false
|
|
}
|
|
```
|
|
The "inplace" flag, if true, will register the model in place in its
|
|
current filesystem location. Otherwise, the model will be copied
|
|
into the InvokeAI models directory.
|
|
|
|
* To install a HuggingFace repo_id using HFModelSource, pass a source of form:
|
|
```
|
|
{
|
|
"type": "hf",
|
|
"repo_id": "stabilityai/stable-diffusion-2.0",
|
|
"variant": "fp16",
|
|
"subfolder": "vae",
|
|
"access_token": "f5820a918aaf01"
|
|
}
|
|
```
|
|
The `variant`, `subfolder` and `access_token` fields are optional.
|
|
|
|
* To install a remote model using an arbitrary URL, pass:
|
|
```
|
|
{
|
|
"type": "url",
|
|
"url": "http://www.civitai.com/models/123456",
|
|
"access_token": "f5820a918aaf01"
|
|
}
|
|
```
|
|
The `access_token` field is optonal
|
|
|
|
The model's configuration record will be probed and filled in
|
|
automatically. To override the default guesses, pass "metadata"
|
|
with a Dict containing the attributes you wish to override.
|
|
|
|
Installation occurs in the background. Either use list_model_install_jobs()
|
|
to poll for completion, or listen on the event bus for the following events:
|
|
|
|
* "model_install_running"
|
|
* "model_install_completed"
|
|
* "model_install_error"
|
|
|
|
On successful completion, the event's payload will contain the field "key"
|
|
containing the installed ID of the model. On an error, the event's payload
|
|
will contain the fields "error_type" and "error" describing the nature of the
|
|
error and its traceback, respectively.
|
|
|
|
"""
|
|
logger = ApiDependencies.invoker.services.logger
|
|
|
|
try:
|
|
installer = ApiDependencies.invoker.services.model_manager.install
|
|
result: ModelInstallJob = installer.import_model(
|
|
source=source,
|
|
config=config,
|
|
)
|
|
logger.info(f"Started installation of {source}")
|
|
except UnknownModelException as e:
|
|
logger.error(str(e))
|
|
raise HTTPException(status_code=424, detail=str(e))
|
|
except InvalidModelException as e:
|
|
logger.error(str(e))
|
|
raise HTTPException(status_code=415)
|
|
except ValueError as e:
|
|
logger.error(str(e))
|
|
raise HTTPException(status_code=409, detail=str(e))
|
|
return result
|
|
|
|
|
|
@model_manager_router.get(
|
|
"/import",
|
|
operation_id="list_model_install_jobs",
|
|
)
|
|
async def list_model_install_jobs() -> List[ModelInstallJob]:
|
|
"""Return the list of model install jobs.
|
|
|
|
Install jobs have a numeric `id`, a `status`, and other fields that provide information on
|
|
the nature of the job and its progress. The `status` is one of:
|
|
|
|
* "waiting" -- Job is waiting in the queue to run
|
|
* "downloading" -- Model file(s) are downloading
|
|
* "running" -- Model has downloaded and the model probing and registration process is running
|
|
* "completed" -- Installation completed successfully
|
|
* "error" -- An error occurred. Details will be in the "error_type" and "error" fields.
|
|
* "cancelled" -- Job was cancelled before completion.
|
|
|
|
Once completed, information about the model such as its size, base
|
|
model, type, and metadata can be retrieved from the `config_out`
|
|
field. For multi-file models such as diffusers, information on individual files
|
|
can be retrieved from `download_parts`.
|
|
|
|
See the example and schema below for more information.
|
|
"""
|
|
jobs: List[ModelInstallJob] = ApiDependencies.invoker.services.model_manager.install.list_jobs()
|
|
return jobs
|
|
|
|
|
|
@model_manager_router.get(
|
|
"/import/{id}",
|
|
operation_id="get_model_install_job",
|
|
responses={
|
|
200: {"description": "Success"},
|
|
404: {"description": "No such job"},
|
|
},
|
|
)
|
|
async def get_model_install_job(id: int = Path(description="Model install id")) -> ModelInstallJob:
|
|
"""
|
|
Return model install job corresponding to the given source. See the documentation for 'List Model Install Jobs'
|
|
for information on the format of the return value.
|
|
"""
|
|
try:
|
|
result: ModelInstallJob = ApiDependencies.invoker.services.model_manager.install.get_job_by_id(id)
|
|
return result
|
|
except ValueError as e:
|
|
raise HTTPException(status_code=404, detail=str(e))
|
|
|
|
|
|
@model_manager_router.delete(
|
|
"/import/{id}",
|
|
operation_id="cancel_model_install_job",
|
|
responses={
|
|
201: {"description": "The job was cancelled successfully"},
|
|
415: {"description": "No such job"},
|
|
},
|
|
status_code=201,
|
|
)
|
|
async def cancel_model_install_job(id: int = Path(description="Model install job ID")) -> None:
|
|
"""Cancel the model install job(s) corresponding to the given job ID."""
|
|
installer = ApiDependencies.invoker.services.model_manager.install
|
|
try:
|
|
job = installer.get_job_by_id(id)
|
|
except ValueError as e:
|
|
raise HTTPException(status_code=415, detail=str(e))
|
|
installer.cancel_job(job)
|
|
|
|
|
|
@model_manager_router.patch(
|
|
"/import",
|
|
operation_id="prune_model_install_jobs",
|
|
responses={
|
|
204: {"description": "All completed and errored jobs have been pruned"},
|
|
400: {"description": "Bad request"},
|
|
},
|
|
)
|
|
async def prune_model_install_jobs() -> Response:
|
|
"""Prune all completed and errored jobs from the install job list."""
|
|
ApiDependencies.invoker.services.model_manager.install.prune_jobs()
|
|
return Response(status_code=204)
|
|
|
|
|
|
@model_manager_router.patch(
|
|
"/sync",
|
|
operation_id="sync_models_to_config",
|
|
responses={
|
|
204: {"description": "Model config record database resynced with files on disk"},
|
|
400: {"description": "Bad request"},
|
|
},
|
|
)
|
|
async def sync_models_to_config() -> Response:
|
|
"""
|
|
Traverse the models and autoimport directories.
|
|
|
|
Model files without a corresponding
|
|
record in the database are added. Orphan records without a models file are deleted.
|
|
"""
|
|
ApiDependencies.invoker.services.model_manager.install.sync_to_config()
|
|
return Response(status_code=204)
|
|
|
|
|
|
@model_manager_router.put(
|
|
"/convert/{key}",
|
|
operation_id="convert_model",
|
|
responses={
|
|
200: {
|
|
"description": "Model converted successfully",
|
|
"content": {"application/json": {"example": example_model_config}},
|
|
},
|
|
400: {"description": "Bad request"},
|
|
404: {"description": "Model not found"},
|
|
409: {"description": "There is already a model registered at this location"},
|
|
},
|
|
)
|
|
async def convert_model(
|
|
key: str = Path(description="Unique key of the safetensors main model to convert to diffusers format."),
|
|
) -> AnyModelConfig:
|
|
"""
|
|
Permanently convert a model into diffusers format, replacing the safetensors version.
|
|
Note that during the conversion process the key and model hash will change.
|
|
The return value is the model configuration for the converted model.
|
|
"""
|
|
logger = ApiDependencies.invoker.services.logger
|
|
loader = ApiDependencies.invoker.services.model_manager.load
|
|
store = ApiDependencies.invoker.services.model_manager.store
|
|
installer = ApiDependencies.invoker.services.model_manager.install
|
|
|
|
try:
|
|
model_config = store.get_model(key)
|
|
except UnknownModelException as e:
|
|
logger.error(str(e))
|
|
raise HTTPException(status_code=424, detail=str(e))
|
|
|
|
if not isinstance(model_config, MainCheckpointConfig):
|
|
logger.error(f"The model with key {key} is not a main checkpoint model.")
|
|
raise HTTPException(400, f"The model with key {key} is not a main checkpoint model.")
|
|
|
|
# loading the model will convert it into a cached diffusers file
|
|
loader.load_model_by_config(model_config, submodel_type=SubModelType.Scheduler)
|
|
|
|
# Get the path of the converted model from the loader
|
|
cache_path = loader.convert_cache.cache_path(key)
|
|
assert cache_path.exists()
|
|
|
|
# temporarily rename the original safetensors file so that there is no naming conflict
|
|
original_name = model_config.name
|
|
model_config.name = f"{original_name}.DELETE"
|
|
store.update_model(key, config=model_config)
|
|
|
|
# install the diffusers
|
|
try:
|
|
new_key = installer.install_path(
|
|
cache_path,
|
|
config={
|
|
"name": original_name,
|
|
"description": model_config.description,
|
|
"original_hash": model_config.original_hash,
|
|
"source": model_config.source,
|
|
},
|
|
)
|
|
except DuplicateModelException as e:
|
|
logger.error(str(e))
|
|
raise HTTPException(status_code=409, detail=str(e))
|
|
|
|
# get the original metadata
|
|
if orig_metadata := store.get_metadata(key):
|
|
store.metadata_store.add_metadata(new_key, orig_metadata)
|
|
|
|
# delete the original safetensors file
|
|
installer.delete(key)
|
|
|
|
# delete the cached version
|
|
shutil.rmtree(cache_path)
|
|
|
|
# return the config record for the new diffusers directory
|
|
new_config: AnyModelConfig = store.get_model(new_key)
|
|
return new_config
|
|
|
|
|
|
@model_manager_router.put(
|
|
"/merge",
|
|
operation_id="merge",
|
|
responses={
|
|
200: {
|
|
"description": "Model converted successfully",
|
|
"content": {"application/json": {"example": example_model_config}},
|
|
},
|
|
400: {"description": "Bad request"},
|
|
404: {"description": "Model not found"},
|
|
409: {"description": "There is already a model registered at this location"},
|
|
},
|
|
)
|
|
async def merge(
|
|
keys: List[str] = Body(description="Keys for two to three models to merge", min_length=2, max_length=3),
|
|
merged_model_name: Optional[str] = Body(description="Name of destination model", default=None),
|
|
alpha: float = Body(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5),
|
|
force: bool = Body(
|
|
description="Force merging of models created with different versions of diffusers",
|
|
default=False,
|
|
),
|
|
interp: Optional[MergeInterpolationMethod] = Body(description="Interpolation method", default=None),
|
|
merge_dest_directory: Optional[str] = Body(
|
|
description="Save the merged model to the designated directory (with 'merged_model_name' appended)",
|
|
default=None,
|
|
),
|
|
) -> AnyModelConfig:
|
|
"""
|
|
Merge diffusers models. The process is controlled by a set parameters provided in the body of the request.
|
|
```
|
|
Argument Description [default]
|
|
-------- ----------------------
|
|
keys List of 2-3 model keys to merge together. All models must use the same base type.
|
|
merged_model_name Name for the merged model [Concat model names]
|
|
alpha Alpha value (0.0-1.0). Higher values give more weight to the second model [0.5]
|
|
force If true, force the merge even if the models were generated by different versions of the diffusers library [False]
|
|
interp Interpolation method. One of "weighted_sum", "sigmoid", "inv_sigmoid" or "add_difference" [weighted_sum]
|
|
merge_dest_directory Specify a directory to store the merged model in [models directory]
|
|
```
|
|
"""
|
|
logger = ApiDependencies.invoker.services.logger
|
|
try:
|
|
logger.info(f"Merging models: {keys} into {merge_dest_directory or '<MODELS>'}/{merged_model_name}")
|
|
dest = pathlib.Path(merge_dest_directory) if merge_dest_directory else None
|
|
installer = ApiDependencies.invoker.services.model_manager.install
|
|
merger = ModelMerger(installer)
|
|
model_names = [installer.record_store.get_model(x).name for x in keys]
|
|
response = merger.merge_diffusion_models_and_save(
|
|
model_keys=keys,
|
|
merged_model_name=merged_model_name or "+".join(model_names),
|
|
alpha=alpha,
|
|
interp=interp,
|
|
force=force,
|
|
merge_dest_directory=dest,
|
|
)
|
|
except UnknownModelException:
|
|
raise HTTPException(
|
|
status_code=404,
|
|
detail=f"One or more of the models '{keys}' not found",
|
|
)
|
|
except ValueError as e:
|
|
raise HTTPException(status_code=400, detail=str(e))
|
|
return response
|