InvokeAI/configs
Lincoln Stein f25c1f900f add support for loading VAE autoencoders
To add a VAE autoencoder to an existing model:

1. Download the appropriate autoencoder and put it into
   models/ldm/stable-diffusion

   Note that you MUST use a VAE that was written for the
   original CompViz Stable Diffusion codebase. For v1.4,
   that would be the file named vae-ft-mse-840000-ema-pruned.ckpt
   that you can download from https://huggingface.co/stabilityai/sd-vae-ft-mse-original

2. Edit config/models.yaml to contain the following stanza, modifying `weights`
   and `vae` as required to match the weights and vae model file names. There is
   no requirement to rename the VAE file.

~~~
stable-diffusion-1.4:
  weights: models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
  description: Stable Diffusion v1.4
  config: configs/stable-diffusion/v1-inference.yaml
  vae: models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt
  width: 512
  height: 512
~~~

3. Alternatively from within the `invoke.py` CLI, you may use the command
   `!editmodel stable-diffusion-1.4` to bring up a simple editor that will
   allow you to add the path to the VAE.

4. If you are just installing InvokeAI for the first time, you can also
   use `!import_model models/ldm/stable-diffusion/sd-v1.4.ckpt` instead
   to create the configuration from scratch.

5. That's it!
2022-10-23 09:33:15 -04:00
..
autoencoder add code 2021-12-21 03:23:41 +01:00
latent-diffusion stable diffusion 2022-08-10 16:30:49 +02:00
retrieval-augmented-diffusion stable diffusion 2022-08-10 16:30:49 +02:00
stable-diffusion Get for external TI .bin files to work 2022-10-08 13:17:44 -04:00
models.yaml add support for loading VAE autoencoders 2022-10-23 09:33:15 -04:00