InvokeAI/ldm/invoke/config/model_install.py
2023-02-14 16:32:54 -05:00

657 lines
22 KiB
Python

#!/usr/bin/env python
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
# Before running stable-diffusion on an internet-isolated machine,
# run this script from one with internet connectivity. The
# two machines must share a common .cache directory.
#
# Coauthor: Kevin Turner http://github.com/keturn
#
import argparse
import curses
import os
import re
import shutil
import sys
import traceback
import warnings
from argparse import Namespace
from math import ceil
from pathlib import Path
from tempfile import TemporaryFile
import npyscreen
import requests
from diffusers import AutoencoderKL
from huggingface_hub import hf_hub_url
from npyscreen import widget
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
from tqdm import tqdm
import invokeai.configs as configs
from ldm.invoke.devices import choose_precision, choose_torch_device
from ldm.invoke.generator.diffusers_pipeline import StableDiffusionGeneratorPipeline
from ldm.invoke.globals import Globals, global_cache_dir, global_config_dir
from ldm.invoke.config.widgets import MultiSelectColumns
warnings.filterwarnings("ignore")
import torch
# --------------------------globals-----------------------
Model_dir = "models"
Weights_dir = "ldm/stable-diffusion-v1/"
# the initial "configs" dir is now bundled in the `invokeai.configs` package
Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml"
Default_config_file = Path(global_config_dir()) / "models.yaml"
SD_Configs = Path(global_config_dir()) / "stable-diffusion"
Datasets = OmegaConf.load(Dataset_path)
Config_preamble = """# This file describes the alternative machine learning models
# available to InvokeAI script.
#
# To add a new model, follow the examples below. Each
# model requires a model config file, a weights file,
# and the width and height of the images it
# was trained on.
"""
# -------------------------------------
def yes_or_no(prompt: str, default_yes=True):
default = "y" if default_yes else "n"
response = input(f"{prompt} [{default}] ") or default
if default_yes:
return response[0] not in ("n", "N")
else:
return response[0] in ("y", "Y")
# -------------------------------------
def get_root(root: str = None) -> str:
if root:
return root
elif os.environ.get("INVOKEAI_ROOT"):
return os.environ.get("INVOKEAI_ROOT")
else:
return Globals.root
class addModelsForm(npyscreen.FormMultiPageAction):
def __init__(self, parentApp, name):
self.initial_models = OmegaConf.load(Dataset_path)
try:
self.existing_models = OmegaConf.load(Default_config_file)
except:
self.existing_models = dict()
self.starter_model_list = [
x for x in list(self.initial_models.keys()) if x not in self.existing_models
]
self.installed_models=dict()
super().__init__(parentApp, name)
def create(self):
window_height, window_width = curses.initscr().getmaxyx()
starter_model_labels = self._get_starter_model_labels()
recommended_models = [
x
for x in self.starter_model_list
if self.initial_models[x].get("recommended", False)
]
previously_installed_models = sorted(
[
x for x in list(self.initial_models.keys()) if x in self.existing_models
]
)
if len(previously_installed_models) > 0:
title = self.add_widget_intelligent(
npyscreen.TitleText,
name="Currently installed starter models. Uncheck to delete:",
editable=False,
color="CONTROL",
)
self.nextrely -= 1
columns = 3
self.previously_installed_models = self.add_widget_intelligent(
MultiSelectColumns,
columns=columns,
values=previously_installed_models,
value=[x for x in range(0,len(previously_installed_models))],
max_height=len(previously_installed_models)+1 // columns,
slow_scroll=True,
scroll_exit = True,
)
self.add_widget_intelligent(
npyscreen.TitleText,
name="Select from a starter set of Stable Diffusion models from HuggingFace:",
editable=False,
color="CONTROL",
)
self.nextrely -= 2
self.add_widget_intelligent(npyscreen.FixedText, value="", editable=False),
self.models_selected = self.add_widget_intelligent(
npyscreen.MultiSelect,
name="Install Starter Models",
values=starter_model_labels,
value=[
self.starter_model_list.index(x)
for x in self.initial_models
if x in recommended_models
],
max_height=len(starter_model_labels) + 1,
scroll_exit=True,
)
for line in [
'Import checkpoint/safetensor models from the directory below.',
'(Use <tab> to autocomplete)'
]:
self.add_widget_intelligent(
npyscreen.TitleText,
name=line,
editable=False,
color="CONTROL",
)
self.nextrely -= 1
self.autoload_directory = self.add_widget_intelligent(
npyscreen.TitleFilename,
name='Directory:',
select_dir=True,
must_exist=True,
use_two_lines=False,
value=os.path.expanduser('~'+'/'),
scroll_exit=True,
)
self.autoload_onstartup = self.add_widget_intelligent(
npyscreen.Checkbox,
name='Scan this directory each time InvokeAI starts for new models to import.',
value=False,
scroll_exit=True,
)
self.nextrely += 1
for line in [
'In the space below, you may cut and paste URLs, paths to .ckpt/.safetensor files',
'or HuggingFace diffusers repository names to import.',
'(Use control-V or shift-control-V to paste):'
]:
self.add_widget_intelligent(
npyscreen.TitleText,
name=line,
editable=False,
color="CONTROL",
)
self.nextrely -= 1
self.model_names = self.add_widget_intelligent(
npyscreen.MultiLineEdit,
max_width=75,
max_height=8,
scroll_exit=True,
relx=3
)
self.autoload_onstartup = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name='Keep files in original format, or convert .ckpt/.safetensors into fast-loading diffusers models:',
values=['Original format','Convert to diffusers format'],
value=0,
scroll_exit=True,
)
self.find_next_editable()
# self.set_editing(self.models_selected)
# self.display()
# self.models_selected.editing=True
# self.models_selected.edit()
def _get_starter_model_labels(self):
window_height, window_width = curses.initscr().getmaxyx()
label_width = 25
checkbox_width = 4
spacing_width = 2
description_width = window_width - label_width - checkbox_width - spacing_width
im = self.initial_models
names = list(im.keys())
descriptions = [im[x].description [0:description_width-3]+'...'
if len(im[x].description) > description_width
else im[x].description
for x in im]
return [
f"%-{label_width}s %s" % (names[x], descriptions[x]) for x in range(0,len(im))
]
def on_ok(self):
self.parentApp.setNextForm(None)
self.editing = False
self.parentApp.selected_models = [
self.starter_model_list[x] for x in self.models_selected.value
]
npyscreen.notify(f"Installing selected {self.parentApp.selected_models}")
def on_cancel(self):
self.parentApp.setNextForm(None)
self.parentApp.selected_models = None
self.editing = False
class AddModelApplication(npyscreen.NPSAppManaged):
def __init__(self, saved_args=None):
super().__init__()
self.models_to_install = None
def onStart(self):
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
self.main = self.addForm(
"MAIN",
addModelsForm,
name="Add/Remove Models",
)
# ---------------------------------------------
def recommended_datasets() -> dict:
datasets = dict()
for ds in Datasets.keys():
if Datasets[ds].get("recommended", False):
datasets[ds] = True
return datasets
# ---------------------------------------------
def default_dataset() -> dict:
datasets = dict()
for ds in Datasets.keys():
if Datasets[ds].get("default", False):
datasets[ds] = True
return datasets
# ---------------------------------------------
def all_datasets() -> dict:
datasets = dict()
for ds in Datasets.keys():
datasets[ds] = True
return datasets
# ---------------------------------------------
# look for legacy model.ckpt in models directory and offer to
# normalize its name
def migrate_models_ckpt():
model_path = os.path.join(Globals.root, Model_dir, Weights_dir)
if not os.path.exists(os.path.join(model_path, "model.ckpt")):
return
new_name = Datasets["stable-diffusion-1.4"]["file"]
print('You seem to have the Stable Diffusion v4.1 "model.ckpt" already installed.')
rename = yes_or_no(f'Ok to rename it to "{new_name}" for future reference?')
if rename:
print(f"model.ckpt => {new_name}")
os.replace(
os.path.join(model_path, "model.ckpt"), os.path.join(model_path, new_name)
)
# ---------------------------------------------
def download_weight_datasets(
models: dict, access_token: str, precision: str = "float32"
):
migrate_models_ckpt()
successful = dict()
for mod in models.keys():
print(f"Downloading {mod}:")
successful[mod] = _download_repo_or_file(
Datasets[mod], access_token, precision=precision
)
return successful
def _download_repo_or_file(
mconfig: DictConfig, access_token: str, precision: str = "float32"
) -> Path:
path = None
if mconfig["format"] == "ckpt":
path = _download_ckpt_weights(mconfig, access_token)
else:
path = _download_diffusion_weights(mconfig, access_token, precision=precision)
if "vae" in mconfig and "repo_id" in mconfig["vae"]:
_download_diffusion_weights(
mconfig["vae"], access_token, precision=precision
)
return path
def _download_ckpt_weights(mconfig: DictConfig, access_token: str) -> Path:
repo_id = mconfig["repo_id"]
filename = mconfig["file"]
cache_dir = os.path.join(Globals.root, Model_dir, Weights_dir)
return hf_download_with_resume(
repo_id=repo_id,
model_dir=cache_dir,
model_name=filename,
access_token=access_token,
)
# ---------------------------------------------
def download_from_hf(
model_class: object, model_name: str, cache_subdir: Path = Path("hub"), **kwargs
):
print("", file=sys.stderr) # to prevent tqdm from overwriting
path = global_cache_dir(cache_subdir)
model = model_class.from_pretrained(
model_name,
cache_dir=path,
resume_download=True,
**kwargs,
)
model_name = "--".join(("models", *model_name.split("/")))
return path / model_name if model else None
def _download_diffusion_weights(
mconfig: DictConfig, access_token: str, precision: str = "float32"
):
repo_id = mconfig["repo_id"]
model_class = (
StableDiffusionGeneratorPipeline
if mconfig.get("format", None) == "diffusers"
else AutoencoderKL
)
extra_arg_list = [{"revision": "fp16"}, {}] if precision == "float16" else [{}]
path = None
for extra_args in extra_arg_list:
try:
path = download_from_hf(
model_class,
repo_id,
cache_subdir="diffusers",
safety_checker=None,
**extra_args,
)
except OSError as e:
if str(e).startswith("fp16 is not a valid"):
pass
else:
print(f"An unexpected error occurred while downloading the model: {e})")
if path:
break
return path
# ---------------------------------------------
def hf_download_with_resume(
repo_id: str, model_dir: str, model_name: str, access_token: str = None
) -> Path:
model_dest = Path(os.path.join(model_dir, model_name))
os.makedirs(model_dir, exist_ok=True)
url = hf_hub_url(repo_id, model_name)
header = {"Authorization": f"Bearer {access_token}"} if access_token else {}
open_mode = "wb"
exist_size = 0
if os.path.exists(model_dest):
exist_size = os.path.getsize(model_dest)
header["Range"] = f"bytes={exist_size}-"
open_mode = "ab"
resp = requests.get(url, headers=header, stream=True)
total = int(resp.headers.get("content-length", 0))
if (
resp.status_code == 416
): # "range not satisfiable", which means nothing to return
print(f"* {model_name}: complete file found. Skipping.")
return model_dest
elif resp.status_code != 200:
print(f"** An error occurred during downloading {model_name}: {resp.reason}")
elif exist_size > 0:
print(f"* {model_name}: partial file found. Resuming...")
else:
print(f"* {model_name}: Downloading...")
try:
if total < 2000:
print(f"*** ERROR DOWNLOADING {model_name}: {resp.text}")
return None
with open(model_dest, open_mode) as file, tqdm(
desc=model_name,
initial=exist_size,
total=total + exist_size,
unit="iB",
unit_scale=True,
unit_divisor=1000,
) as bar:
for data in resp.iter_content(chunk_size=1024):
size = file.write(data)
bar.update(size)
except Exception as e:
print(f"An error occurred while downloading {model_name}: {str(e)}")
return None
return model_dest
# ---------------------------------------------
def update_config_file(successfully_downloaded: dict, opt: dict):
config_file = (
Path(opt.config_file) if opt.config_file is not None else Default_config_file
)
# In some cases (incomplete setup, etc), the default configs directory might be missing.
# Create it if it doesn't exist.
# this check is ignored if opt.config_file is specified - user is assumed to know what they
# are doing if they are passing a custom config file from elsewhere.
if config_file is Default_config_file and not config_file.parent.exists():
configs_src = Dataset_path.parent
configs_dest = Default_config_file.parent
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
yaml = new_config_file_contents(successfully_downloaded, config_file, opt)
try:
backup = None
if os.path.exists(config_file):
print(
f"** {config_file.name} exists. Renaming to {config_file.stem}.yaml.orig"
)
backup = config_file.with_suffix(".yaml.orig")
## Ugh. Windows is unable to overwrite an existing backup file, raises a WinError 183
if sys.platform == "win32" and backup.is_file():
backup.unlink()
config_file.rename(backup)
with TemporaryFile() as tmp:
tmp.write(Config_preamble.encode())
tmp.write(yaml.encode())
with open(str(config_file.expanduser().resolve()), "wb") as new_config:
tmp.seek(0)
new_config.write(tmp.read())
except Exception as e:
print(f"**Error creating config file {config_file}: {str(e)} **")
if backup is not None:
print("restoring previous config file")
## workaround, for WinError 183, see above
if sys.platform == "win32" and config_file.is_file():
config_file.unlink()
backup.rename(config_file)
return
print(f"Successfully created new configuration file {config_file}")
# ---------------------------------------------
def new_config_file_contents(
successfully_downloaded: dict, config_file: Path, opt: dict
) -> str:
if config_file.exists():
conf = OmegaConf.load(str(config_file.expanduser().resolve()))
else:
conf = OmegaConf.create()
default_selected = None
for model in successfully_downloaded:
# a bit hacky - what we are doing here is seeing whether a checkpoint
# version of the model was previously defined, and whether the current
# model is a diffusers (indicated with a path)
if conf.get(model) and Path(successfully_downloaded[model]).is_dir():
offer_to_delete_weights(model, conf[model], opt.yes_to_all)
stanza = {}
mod = Datasets[model]
stanza["description"] = mod["description"]
stanza["repo_id"] = mod["repo_id"]
stanza["format"] = mod["format"]
# diffusers don't need width and height (probably .ckpt doesn't either)
# so we no longer require these in INITIAL_MODELS.yaml
if "width" in mod:
stanza["width"] = mod["width"]
if "height" in mod:
stanza["height"] = mod["height"]
if "file" in mod:
stanza["weights"] = os.path.relpath(
successfully_downloaded[model], start=Globals.root
)
stanza["config"] = os.path.normpath(os.path.join(SD_Configs, mod["config"]))
if "vae" in mod:
if "file" in mod["vae"]:
stanza["vae"] = os.path.normpath(
os.path.join(Model_dir, Weights_dir, mod["vae"]["file"])
)
else:
stanza["vae"] = mod["vae"]
if mod.get("default", False):
stanza["default"] = True
default_selected = True
conf[model] = stanza
# if no default model was chosen, then we select the first
# one in the list
if not default_selected:
conf[list(successfully_downloaded.keys())[0]]["default"] = True
return OmegaConf.to_yaml(conf)
# ---------------------------------------------
def offer_to_delete_weights(model_name: str, conf_stanza: dict, yes_to_all: bool):
if not (weights := conf_stanza.get("weights")):
return
if re.match("/VAE/", conf_stanza.get("config")):
return
if yes_to_all or yes_or_no(
f"\n** The checkpoint version of {model_name} is superseded by the diffusers version. Delete the original file {weights}?",
default_yes=False,
):
weights = Path(weights)
if not weights.is_absolute():
weights = Path(Globals.root) / weights
try:
weights.unlink()
except OSError as e:
print(str(e))
# --------------------------------------------------------
def select_and_download_models(opt: Namespace):
if opt.default_only:
models_to_download = default_dataset()
else:
myapplication = AddModelApplication()
myapplication.run()
models_to_download = dict(map(lambda x: (x, True), myapplication.selected_models)) if myapplication.selected_models else None
if not models_to_download:
print(
'** No models were selected. To run this program again, select "Install initial models" from the invoke script.'
)
return
print("** Downloading and installing the selected models.")
precision = (
"float32"
if opt.full_precision
else choose_precision(torch.device(choose_torch_device()))
)
successfully_downloaded = download_weight_datasets(
models=models_to_download,
access_token=None,
precision=precision,
)
update_config_file(successfully_downloaded, opt)
if len(successfully_downloaded) < len(models_to_download):
print("** Some of the model downloads were not successful")
print(
"\nYour starting models were installed. To find and add more models, see https://invoke-ai.github.io/InvokeAI/installation/050_INSTALLING_MODELS"
)
# -------------------------------------
def main():
parser = argparse.ArgumentParser(description="InvokeAI model downloader")
parser.add_argument(
"--full-precision",
dest="full_precision",
action=argparse.BooleanOptionalAction,
type=bool,
default=False,
help="use 32-bit weights instead of faster 16-bit weights",
)
parser.add_argument(
"--yes",
"-y",
dest="yes_to_all",
action="store_true",
help='answer "yes" to all prompts',
)
parser.add_argument(
"--default_only",
action="store_true",
help="only install the default model",
)
parser.add_argument(
"--config_file",
"-c",
dest="config_file",
type=str,
default=None,
help="path to configuration file to create",
)
parser.add_argument(
"--root_dir",
dest="root",
type=str,
default=None,
help="path to root of install directory",
)
opt = parser.parse_args()
# setting a global here
Globals.root = os.path.expanduser(get_root(opt.root) or "")
try:
select_and_download_models(opt)
except AssertionError as e:
print(str(e))
sys.exit(-1)
except KeyboardInterrupt:
print("\nGoodbye! Come back soon.")
except (widget.NotEnoughSpaceForWidget, Exception) as e:
if str(e).startswith("Height of 1 allocated"):
print(
"** Insufficient vertical space for the interface. Please make your window taller and try again"
)
elif str(e).startswith('addwstr'):
print(
'** Insufficient horizontal space for the interface. Please make your window wider and try again.'
)
else:
print(f"** A layout error has occurred: {str(e)}")
sys.exit(-1)
# -------------------------------------
if __name__ == "__main__":
main()