InvokeAI/invokeai/app/invocations/flux_text_to_image.py
2024-08-21 09:04:37 -04:00

260 lines
11 KiB
Python

from pathlib import Path
from typing import Literal
from pydantic import Field
import accelerate
import torch
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
from invokeai.app.invocations.model import ModelIdentifierField
from optimum.quanto import qfloat8
from PIL import Image
from safetensors.torch import load_file
from transformers.models.auto import AutoModelForTextEncoding
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import (
ConditioningField,
FieldDescriptions,
Input,
InputField,
WithBoard,
WithMetadata,
UIType,
)
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.quantization.bnb_nf4 import quantize_model_nf4
from invokeai.backend.quantization.fast_quantized_diffusion_model import FastQuantizedDiffusersModel
from invokeai.backend.quantization.fast_quantized_transformers_model import FastQuantizedTransformersModel
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo
from invokeai.backend.util.devices import TorchDevice
TFluxModelKeys = Literal["flux-schnell"]
FLUX_MODELS: dict[TFluxModelKeys, str] = {"flux-schnell": "black-forest-labs/FLUX.1-schnell"}
class QuantizedFluxTransformer2DModel(FastQuantizedDiffusersModel):
base_class = FluxTransformer2DModel
class QuantizedModelForTextEncoding(FastQuantizedTransformersModel):
auto_class = AutoModelForTextEncoding
@invocation(
"flux_text_to_image",
title="FLUX Text to Image",
tags=["image"],
category="image",
version="1.0.0",
)
class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Text-to-image generation using a FLUX model."""
flux_model: ModelIdentifierField = InputField(
description="The Flux model",
input=Input.Any,
ui_type=UIType.FluxMainModel
)
model: TFluxModelKeys = InputField(description="The FLUX model to use for text-to-image generation.")
quantization_type: Literal["raw", "NF4", "llm_int8"] = InputField(
default="raw", description="The type of quantization to use for the transformer model."
)
use_8bit: bool = InputField(
default=False, description="Whether to quantize the transformer model to 8-bit precision."
)
positive_text_conditioning: ConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
width: int = InputField(default=1024, multiple_of=16, description="Width of the generated image.")
height: int = InputField(default=1024, multiple_of=16, description="Height of the generated image.")
num_steps: int = InputField(default=4, description="Number of diffusion steps.")
guidance: float = InputField(
default=4.0,
description="The guidance strength. Higher values adhere more strictly to the prompt, and will produce less diverse images.",
)
seed: int = InputField(default=0, description="Randomness seed for reproducibility.")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
# model_path = context.models.download_and_cache_model(FLUX_MODELS[self.model])
flux_transformer_path = context.models.download_and_cache_model(
"https://huggingface.co/black-forest-labs/FLUX.1-schnell/resolve/main/flux1-schnell.safetensors"
)
flux_ae_path = context.models.download_and_cache_model(
"https://huggingface.co/black-forest-labs/FLUX.1-schnell/resolve/main/ae.safetensors"
)
# Load the conditioning data.
cond_data = context.conditioning.load(self.positive_text_conditioning.conditioning_name)
assert len(cond_data.conditionings) == 1
flux_conditioning = cond_data.conditionings[0]
assert isinstance(flux_conditioning, FLUXConditioningInfo)
latents = self._run_diffusion(
context, flux_transformer_path, flux_conditioning.clip_embeds, flux_conditioning.t5_embeds
)
image = self._run_vae_decoding(context, flux_ae_path, latents)
image_dto = context.images.save(image=image)
return ImageOutput.build(image_dto)
def _run_diffusion(
self,
context: InvocationContext,
flux_transformer_path: Path,
clip_embeddings: torch.Tensor,
t5_embeddings: torch.Tensor,
):
inference_dtype = TorchDevice.choose_torch_dtype()
# Prepare input noise.
# TODO(ryand): Does the seed behave the same on different devices? Should we re-implement this to always use a
# CPU RNG?
x = get_noise(
num_samples=1,
height=self.height,
width=self.width,
device=TorchDevice.choose_torch_device(),
dtype=inference_dtype,
seed=self.seed,
)
img, img_ids = self._prepare_latent_img_patches(x)
# HACK(ryand): Find a better way to determine if this is a schnell model or not.
is_schnell = "shnell" in str(flux_transformer_path)
timesteps = get_schedule(
num_steps=self.num_steps,
image_seq_len=img.shape[1],
shift=not is_schnell,
)
bs, t5_seq_len, _ = t5_embeddings.shape
txt_ids = torch.zeros(bs, t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device())
# HACK(ryand): Manually empty the cache. Currently we don't check the size of the model before loading it from
# disk. Since the transformer model is large (24GB), there's a good chance that it will OOM on 32GB RAM systems
# if the cache is not empty.
context.models._services.model_manager.load.ram_cache.make_room(24 * 2**30)
with context.models.load_local_model(
model_path=flux_transformer_path, loader=self._load_flux_transformer
) as transformer:
assert isinstance(transformer, Flux)
x = denoise(
model=transformer,
img=img,
img_ids=img_ids,
txt=t5_embeddings,
txt_ids=txt_ids,
vec=clip_embeddings,
timesteps=timesteps,
guidance=self.guidance,
)
x = unpack(x.float(), self.height, self.width)
return x
def _prepare_latent_img_patches(self, latent_img: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
"""Convert an input image in latent space to patches for diffusion.
This implementation was extracted from:
https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/sampling.py#L32
Returns:
tuple[Tensor, Tensor]: (img, img_ids), as defined in the original flux repo.
"""
bs, c, h, w = latent_img.shape
# Pixel unshuffle with a scale of 2, and flatten the height/width dimensions to get an array of patches.
img = rearrange(latent_img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img.shape[0] == 1 and bs > 1:
img = repeat(img, "1 ... -> bs ...", bs=bs)
# Generate patch position ids.
img_ids = torch.zeros(h // 2, w // 2, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
return img, img_ids
def _run_vae_decoding(
self,
context: InvocationContext,
flux_ae_path: Path,
latents: torch.Tensor,
) -> Image.Image:
with context.models.load_local_model(model_path=flux_ae_path, loader=self._load_flux_vae) as vae:
assert isinstance(vae, AutoEncoder)
# TODO(ryand): Test that this works with both float16 and bfloat16.
with torch.autocast(device_type=latents.device.type, dtype=TorchDevice.choose_torch_dtype()):
img = vae.decode(latents)
img.clamp(-1, 1)
img = rearrange(img[0], "c h w -> h w c")
img_pil = Image.fromarray((127.5 * (img + 1.0)).byte().cpu().numpy())
return img_pil
def _load_flux_transformer(self, path: Path) -> FluxTransformer2DModel:
inference_dtype = TorchDevice.choose_torch_dtype()
if self.quantization_type == "raw":
# TODO(ryand): Determine if this is a schnell model or a dev model and load the appropriate config.
params = flux_configs["flux-schnell"].params
# Initialize the model on the "meta" device.
with accelerate.init_empty_weights():
model = Flux(params).to(inference_dtype)
state_dict = load_file(path)
# TODO(ryand): Cast the state_dict to the appropriate dtype?
model.load_state_dict(state_dict, strict=True, assign=True)
elif self.quantization_type == "NF4":
model_path = path.parent / "bnb_nf4.safetensors"
# TODO(ryand): Determine if this is a schnell model or a dev model and load the appropriate config.
params = flux_configs["flux-schnell"].params
# Initialize the model on the "meta" device.
with accelerate.init_empty_weights():
model = Flux(params)
model = quantize_model_nf4(model, modules_to_not_convert=set(), compute_dtype=torch.bfloat16)
# TODO(ryand): Right now, some of the weights are loaded in bfloat16. Think about how best to handle
# this on GPUs without bfloat16 support.
state_dict = load_file(model_path)
model.load_state_dict(state_dict, strict=True, assign=True)
elif self.quantization_type == "llm_int8":
raise NotImplementedError("LLM int8 quantization is not yet supported.")
# model_config = FluxTransformer2DModel.load_config(path, local_files_only=True)
# with accelerate.init_empty_weights():
# empty_model = FluxTransformer2DModel.from_config(model_config)
# assert isinstance(empty_model, FluxTransformer2DModel)
# model_int8_path = path / "bnb_llm_int8"
# assert model_int8_path.exists()
# with accelerate.init_empty_weights():
# model = quantize_model_llm_int8(empty_model, modules_to_not_convert=set())
# sd = load_file(model_int8_path / "model.safetensors")
# model.load_state_dict(sd, strict=True, assign=True)
else:
raise ValueError(f"Unsupported quantization type: {self.quantization_type}")
assert isinstance(model, FluxTransformer2DModel)
return model
@staticmethod
def _load_flux_vae(path: Path) -> AutoEncoder:
# TODO(ryand): Determine if this is a schnell model or a dev model and load the appropriate config.
ae_params = flux_configs["flux1-schnell"].ae_params
with accelerate.init_empty_weights():
ae = AutoEncoder(ae_params)
state_dict = load_file(path)
ae.load_state_dict(state_dict, strict=True, assign=True)
return ae