mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
72 lines
1.9 KiB
Python
72 lines
1.9 KiB
Python
import os
|
|
import torch
|
|
from typing import Optional, Union, Literal
|
|
from .base import (
|
|
ModelBase,
|
|
ModelConfigBase,
|
|
BaseModelType,
|
|
ModelType,
|
|
SubModelType,
|
|
classproperty,
|
|
)
|
|
# TODO: naming
|
|
from ..lora import LoRAModel as LoRAModelRaw
|
|
|
|
class LoRAModel(ModelBase):
|
|
#model_size: int
|
|
|
|
class Config(ModelConfigBase):
|
|
format: Union[Literal["lycoris"], Literal["diffusers"]]
|
|
|
|
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
|
assert model_type == ModelType.Lora
|
|
super().__init__(model_path, base_model, model_type)
|
|
|
|
self.model_size = os.path.getsize(self.model_path)
|
|
|
|
def get_size(self, child_type: Optional[SubModelType] = None):
|
|
if child_type is not None:
|
|
raise Exception("There is no child models in lora")
|
|
return self.model_size
|
|
|
|
def get_model(
|
|
self,
|
|
torch_dtype: Optional[torch.dtype],
|
|
child_type: Optional[SubModelType] = None,
|
|
):
|
|
if child_type is not None:
|
|
raise Exception("There is no child models in lora")
|
|
|
|
model = LoRAModelRaw.from_checkpoint(
|
|
file_path=self.model_path,
|
|
dtype=torch_dtype,
|
|
)
|
|
|
|
self.model_size = model.calc_size()
|
|
return model
|
|
|
|
@classproperty
|
|
def save_to_config(cls) -> bool:
|
|
return False
|
|
|
|
@classmethod
|
|
def detect_format(cls, path: str):
|
|
if os.path.isdir(path):
|
|
return "diffusers"
|
|
else:
|
|
return "lycoris"
|
|
|
|
@classmethod
|
|
def convert_if_required(
|
|
cls,
|
|
model_path: str,
|
|
output_path: str,
|
|
config: ModelConfigBase,
|
|
base_model: BaseModelType,
|
|
) -> str:
|
|
if cls.detect_format(model_path) == "diffusers":
|
|
# TODO: add diffusers lora when it stabilizes a bit
|
|
raise NotImplementedError("Diffusers lora not supported")
|
|
else:
|
|
return model_path
|