mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
f74f3d6a3a
1. Separated the "starter models" and "more models" sections. This gives us room to list all installed diffuserse models, not just those that are on the starter list. 2. Support mouse-based paste into the textboxes with either middle or right mouse buttons. 3. Support terminal-style cursor movement: ^A to move to beginning of line ^E to move to end of line ^K kill text to right and put in killring ^Y yank text back 4. Internal code cleanup.
871 lines
29 KiB
Python
Executable File
871 lines
29 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
|
|
# Before running stable-diffusion on an internet-isolated machine,
|
|
# run this script from one with internet connectivity. The
|
|
# two machines must share a common .cache directory.
|
|
#
|
|
# Coauthor: Kevin Turner http://github.com/keturn
|
|
#
|
|
import sys
|
|
print("Loading Python libraries...\n",file=sys.stderr)
|
|
|
|
import argparse
|
|
import io
|
|
import os
|
|
import shutil
|
|
import traceback
|
|
import warnings
|
|
from argparse import Namespace
|
|
from pathlib import Path
|
|
from shutil import get_terminal_size
|
|
from typing import get_type_hints
|
|
from urllib import request
|
|
|
|
import npyscreen
|
|
import transformers
|
|
from diffusers import AutoencoderKL
|
|
from huggingface_hub import HfFolder
|
|
from huggingface_hub import login as hf_hub_login
|
|
from omegaconf import OmegaConf
|
|
from tqdm import tqdm
|
|
from transformers import (
|
|
AutoProcessor,
|
|
CLIPSegForImageSegmentation,
|
|
CLIPTextModel,
|
|
CLIPTokenizer,
|
|
)
|
|
|
|
import invokeai.configs as configs
|
|
|
|
from invokeai.frontend.install.model_install import addModelsForm, process_and_execute
|
|
from invokeai.frontend.install.widgets import (
|
|
CenteredButtonPress,
|
|
IntTitleSlider,
|
|
set_min_terminal_size,
|
|
)
|
|
from invokeai.backend.install.legacy_arg_parsing import legacy_parser
|
|
from invokeai.backend.install.model_install_backend import (
|
|
default_dataset,
|
|
download_from_hf,
|
|
hf_download_with_resume,
|
|
recommended_datasets,
|
|
UserSelections,
|
|
)
|
|
from invokeai.app.services.config import (
|
|
get_invokeai_config,
|
|
InvokeAIAppConfig,
|
|
)
|
|
|
|
warnings.filterwarnings("ignore")
|
|
|
|
transformers.logging.set_verbosity_error()
|
|
|
|
|
|
# --------------------------globals-----------------------
|
|
config = get_invokeai_config()
|
|
|
|
Model_dir = "models"
|
|
Weights_dir = "ldm/stable-diffusion-v1/"
|
|
|
|
Default_config_file = config.model_conf_path
|
|
SD_Configs = config.legacy_conf_path
|
|
|
|
# minimum size for the UI
|
|
MIN_COLS = 135
|
|
MIN_LINES = 45
|
|
|
|
PRECISION_CHOICES = ['auto','float16','float32','autocast']
|
|
|
|
INIT_FILE_PREAMBLE = """# InvokeAI initialization file
|
|
# This is the InvokeAI initialization file, which contains command-line default values.
|
|
# Feel free to edit. If anything goes wrong, you can re-initialize this file by deleting
|
|
# or renaming it and then running invokeai-configure again.
|
|
"""
|
|
|
|
|
|
# --------------------------------------------
|
|
def postscript(errors: None):
|
|
if not any(errors):
|
|
message = f"""
|
|
** INVOKEAI INSTALLATION SUCCESSFUL **
|
|
If you installed manually from source or with 'pip install': activate the virtual environment
|
|
then run one of the following commands to start InvokeAI.
|
|
|
|
Web UI:
|
|
invokeai-web
|
|
|
|
Command-line client:
|
|
invokeai
|
|
|
|
If you installed using an installation script, run:
|
|
{config.root}/invoke.{"bat" if sys.platform == "win32" else "sh"}
|
|
|
|
Add the '--help' argument to see all of the command-line switches available for use.
|
|
"""
|
|
|
|
else:
|
|
message = "\n** There were errors during installation. It is possible some of the models were not fully downloaded.\n"
|
|
for err in errors:
|
|
message += f"\t - {err}\n"
|
|
message += "Please check the logs above and correct any issues."
|
|
|
|
print(message)
|
|
|
|
|
|
# ---------------------------------------------
|
|
def yes_or_no(prompt: str, default_yes=True):
|
|
default = "y" if default_yes else "n"
|
|
response = input(f"{prompt} [{default}] ") or default
|
|
if default_yes:
|
|
return response[0] not in ("n", "N")
|
|
else:
|
|
return response[0] in ("y", "Y")
|
|
|
|
|
|
# ---------------------------------------------
|
|
def HfLogin(access_token) -> str:
|
|
"""
|
|
Helper for logging in to Huggingface
|
|
The stdout capture is needed to hide the irrelevant "git credential helper" warning
|
|
"""
|
|
|
|
capture = io.StringIO()
|
|
sys.stdout = capture
|
|
try:
|
|
hf_hub_login(token=access_token, add_to_git_credential=False)
|
|
sys.stdout = sys.__stdout__
|
|
except Exception as exc:
|
|
sys.stdout = sys.__stdout__
|
|
print(exc)
|
|
raise exc
|
|
|
|
|
|
# -------------------------------------
|
|
class ProgressBar:
|
|
def __init__(self, model_name="file"):
|
|
self.pbar = None
|
|
self.name = model_name
|
|
|
|
def __call__(self, block_num, block_size, total_size):
|
|
if not self.pbar:
|
|
self.pbar = tqdm(
|
|
desc=self.name,
|
|
initial=0,
|
|
unit="iB",
|
|
unit_scale=True,
|
|
unit_divisor=1000,
|
|
total=total_size,
|
|
)
|
|
self.pbar.update(block_size)
|
|
|
|
|
|
# ---------------------------------------------
|
|
def download_with_progress_bar(model_url: str, model_dest: str, label: str = "the"):
|
|
try:
|
|
print(f"Installing {label} model file {model_url}...", end="", file=sys.stderr)
|
|
if not os.path.exists(model_dest):
|
|
os.makedirs(os.path.dirname(model_dest), exist_ok=True)
|
|
request.urlretrieve(
|
|
model_url, model_dest, ProgressBar(os.path.basename(model_dest))
|
|
)
|
|
print("...downloaded successfully", file=sys.stderr)
|
|
else:
|
|
print("...exists", file=sys.stderr)
|
|
except Exception:
|
|
print("...download failed", file=sys.stderr)
|
|
print(f"Error downloading {label} model", file=sys.stderr)
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
|
|
|
|
# ---------------------------------------------
|
|
# this will preload the Bert tokenizer fles
|
|
def download_bert():
|
|
print("Installing bert tokenizer...", file=sys.stderr)
|
|
with warnings.catch_warnings():
|
|
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
|
from transformers import BertTokenizerFast
|
|
|
|
download_from_hf(BertTokenizerFast, "bert-base-uncased")
|
|
|
|
|
|
# ---------------------------------------------
|
|
def download_sd1_clip():
|
|
print("Installing SD1 clip model...", file=sys.stderr)
|
|
version = "openai/clip-vit-large-patch14"
|
|
download_from_hf(CLIPTokenizer, version)
|
|
download_from_hf(CLIPTextModel, version)
|
|
|
|
|
|
# ---------------------------------------------
|
|
def download_sd2_clip():
|
|
version = "stabilityai/stable-diffusion-2"
|
|
print("Installing SD2 clip model...", file=sys.stderr)
|
|
download_from_hf(CLIPTokenizer, version, subfolder="tokenizer")
|
|
download_from_hf(CLIPTextModel, version, subfolder="text_encoder")
|
|
|
|
|
|
# ---------------------------------------------
|
|
def download_realesrgan():
|
|
print("Installing models from RealESRGAN...", file=sys.stderr)
|
|
model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth"
|
|
wdn_model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth"
|
|
|
|
model_dest = os.path.join(
|
|
config.root, "models/realesrgan/realesr-general-x4v3.pth"
|
|
)
|
|
|
|
wdn_model_dest = os.path.join(
|
|
config.root, "models/realesrgan/realesr-general-wdn-x4v3.pth"
|
|
)
|
|
|
|
download_with_progress_bar(model_url, model_dest, "RealESRGAN")
|
|
download_with_progress_bar(wdn_model_url, wdn_model_dest, "RealESRGANwdn")
|
|
|
|
|
|
def download_gfpgan():
|
|
print("Installing GFPGAN models...", file=sys.stderr)
|
|
for model in (
|
|
[
|
|
"https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth",
|
|
"./models/gfpgan/GFPGANv1.4.pth",
|
|
],
|
|
[
|
|
"https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth",
|
|
"./models/gfpgan/weights/detection_Resnet50_Final.pth",
|
|
],
|
|
[
|
|
"https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth",
|
|
"./models/gfpgan/weights/parsing_parsenet.pth",
|
|
],
|
|
):
|
|
model_url, model_dest = model[0], os.path.join(config.root, model[1])
|
|
download_with_progress_bar(model_url, model_dest, "GFPGAN weights")
|
|
|
|
|
|
# ---------------------------------------------
|
|
def download_codeformer():
|
|
print("Installing CodeFormer model file...", file=sys.stderr)
|
|
model_url = (
|
|
"https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth"
|
|
)
|
|
model_dest = os.path.join(config.root, "models/codeformer/codeformer.pth")
|
|
download_with_progress_bar(model_url, model_dest, "CodeFormer")
|
|
|
|
|
|
# ---------------------------------------------
|
|
def download_clipseg():
|
|
print("Installing clipseg model for text-based masking...", file=sys.stderr)
|
|
CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined"
|
|
try:
|
|
download_from_hf(AutoProcessor, CLIPSEG_MODEL)
|
|
download_from_hf(CLIPSegForImageSegmentation, CLIPSEG_MODEL)
|
|
except Exception:
|
|
print("Error installing clipseg model:")
|
|
print(traceback.format_exc())
|
|
|
|
|
|
# -------------------------------------
|
|
def download_safety_checker():
|
|
print("Installing model for NSFW content detection...", file=sys.stderr)
|
|
try:
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
|
StableDiffusionSafetyChecker,
|
|
)
|
|
from transformers import AutoFeatureExtractor
|
|
except ModuleNotFoundError:
|
|
print("Error installing NSFW checker model:")
|
|
print(traceback.format_exc())
|
|
return
|
|
safety_model_id = "CompVis/stable-diffusion-safety-checker"
|
|
print("AutoFeatureExtractor...", file=sys.stderr)
|
|
download_from_hf(AutoFeatureExtractor, safety_model_id)
|
|
print("StableDiffusionSafetyChecker...", file=sys.stderr)
|
|
download_from_hf(StableDiffusionSafetyChecker, safety_model_id)
|
|
|
|
|
|
# -------------------------------------
|
|
def download_vaes():
|
|
print("Installing stabilityai VAE...", file=sys.stderr)
|
|
try:
|
|
# first the diffusers version
|
|
repo_id = "stabilityai/sd-vae-ft-mse"
|
|
args = dict(
|
|
cache_dir=config.cache_dir,
|
|
)
|
|
if not AutoencoderKL.from_pretrained(repo_id, **args):
|
|
raise Exception(f"download of {repo_id} failed")
|
|
|
|
repo_id = "stabilityai/sd-vae-ft-mse-original"
|
|
model_name = "vae-ft-mse-840000-ema-pruned.ckpt"
|
|
# next the legacy checkpoint version
|
|
if not hf_download_with_resume(
|
|
repo_id=repo_id,
|
|
model_name=model_name,
|
|
model_dir=str(config.root / Model_dir / Weights_dir),
|
|
):
|
|
raise Exception(f"download of {model_name} failed")
|
|
except Exception as e:
|
|
print(f"Error downloading StabilityAI standard VAE: {str(e)}", file=sys.stderr)
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
|
|
|
|
# -------------------------------------
|
|
def get_root(root: str = None) -> str:
|
|
if root:
|
|
return root
|
|
elif os.environ.get("INVOKEAI_ROOT"):
|
|
return os.environ.get("INVOKEAI_ROOT")
|
|
else:
|
|
return config.root
|
|
|
|
# -------------------------------------
|
|
class editOptsForm(npyscreen.FormMultiPage):
|
|
# for responsive resizing - disabled
|
|
# FIX_MINIMUM_SIZE_WHEN_CREATED = False
|
|
|
|
def create(self):
|
|
program_opts = self.parentApp.program_opts
|
|
old_opts = self.parentApp.invokeai_opts
|
|
first_time = not (config.root / 'invokeai.yaml').exists()
|
|
access_token = HfFolder.get_token()
|
|
window_width, window_height = get_terminal_size()
|
|
for i in [
|
|
"Configure startup settings. You can come back and change these later.",
|
|
"Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields.",
|
|
"Use cursor arrows to make a checkbox selection, and space to toggle.",
|
|
]:
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value=i,
|
|
editable=False,
|
|
color="CONTROL",
|
|
)
|
|
|
|
self.nextrely += 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.TitleFixedText,
|
|
name="== BASIC OPTIONS ==",
|
|
begin_entry_at=0,
|
|
editable=False,
|
|
color="CONTROL",
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely -= 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value="Select an output directory for images:",
|
|
editable=False,
|
|
color="CONTROL",
|
|
)
|
|
self.outdir = self.add_widget_intelligent(
|
|
npyscreen.TitleFilename,
|
|
name="(<tab> autocompletes, ctrl-N advances):",
|
|
value=str(old_opts.outdir) or str(default_output_dir()),
|
|
select_dir=True,
|
|
must_exist=False,
|
|
use_two_lines=False,
|
|
labelColor="GOOD",
|
|
begin_entry_at=40,
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely += 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value="Activate the NSFW checker to blur images showing potential sexual imagery:",
|
|
editable=False,
|
|
color="CONTROL",
|
|
)
|
|
self.nsfw_checker = self.add_widget_intelligent(
|
|
npyscreen.Checkbox,
|
|
name="NSFW checker",
|
|
value=old_opts.nsfw_checker,
|
|
relx=5,
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely += 1
|
|
for i in [
|
|
"If you have an account at HuggingFace you may optionally paste your access token here",
|
|
'to allow InvokeAI to download restricted styles & subjects from the "Concept Library".',
|
|
"See https://huggingface.co/settings/tokens",
|
|
]:
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value=i,
|
|
editable=False,
|
|
color="CONTROL",
|
|
)
|
|
|
|
self.hf_token = self.add_widget_intelligent(
|
|
npyscreen.TitlePassword,
|
|
name="Access Token (ctrl-shift-V pastes):",
|
|
value=access_token,
|
|
begin_entry_at=42,
|
|
use_two_lines=False,
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely += 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.TitleFixedText,
|
|
name="== ADVANCED OPTIONS ==",
|
|
begin_entry_at=0,
|
|
editable=False,
|
|
color="CONTROL",
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely -= 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.TitleFixedText,
|
|
name="GPU Management",
|
|
begin_entry_at=0,
|
|
editable=False,
|
|
color="CONTROL",
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely -= 1
|
|
self.free_gpu_mem = self.add_widget_intelligent(
|
|
npyscreen.Checkbox,
|
|
name="Free GPU memory after each generation",
|
|
value=old_opts.free_gpu_mem,
|
|
relx=5,
|
|
scroll_exit=True,
|
|
)
|
|
self.xformers_enabled = self.add_widget_intelligent(
|
|
npyscreen.Checkbox,
|
|
name="Enable xformers support if available",
|
|
value=old_opts.xformers_enabled,
|
|
relx=5,
|
|
scroll_exit=True,
|
|
)
|
|
self.always_use_cpu = self.add_widget_intelligent(
|
|
npyscreen.Checkbox,
|
|
name="Force CPU to be used on GPU systems",
|
|
value=old_opts.always_use_cpu,
|
|
relx=5,
|
|
scroll_exit=True,
|
|
)
|
|
precision = old_opts.precision or (
|
|
"float32" if program_opts.full_precision else "auto"
|
|
)
|
|
self.precision = self.add_widget_intelligent(
|
|
npyscreen.TitleSelectOne,
|
|
name="Precision",
|
|
values=PRECISION_CHOICES,
|
|
value=PRECISION_CHOICES.index(precision),
|
|
begin_entry_at=3,
|
|
max_height=len(PRECISION_CHOICES) + 1,
|
|
scroll_exit=True,
|
|
)
|
|
self.max_loaded_models = self.add_widget_intelligent(
|
|
IntTitleSlider,
|
|
name="Number of models to cache in CPU memory (each will use 2-4 GB!)",
|
|
value=old_opts.max_loaded_models,
|
|
out_of=10,
|
|
lowest=1,
|
|
begin_entry_at=4,
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely += 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value="Directories containing textual inversion and LoRA models (<tab> autocompletes, ctrl-N advances):",
|
|
editable=False,
|
|
color="CONTROL",
|
|
)
|
|
self.embedding_dir = self.add_widget_intelligent(
|
|
npyscreen.TitleFilename,
|
|
name=" Textual Inversion Embeddings:",
|
|
value=str(default_embedding_dir()),
|
|
select_dir=True,
|
|
must_exist=False,
|
|
use_two_lines=False,
|
|
labelColor="GOOD",
|
|
begin_entry_at=32,
|
|
scroll_exit=True,
|
|
)
|
|
self.lora_dir = self.add_widget_intelligent(
|
|
npyscreen.TitleFilename,
|
|
name=" LoRA and LyCORIS:",
|
|
value=str(default_lora_dir()),
|
|
select_dir=True,
|
|
must_exist=False,
|
|
use_two_lines=False,
|
|
labelColor="GOOD",
|
|
begin_entry_at=32,
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely += 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.TitleFixedText,
|
|
name="== LICENSE ==",
|
|
begin_entry_at=0,
|
|
editable=False,
|
|
color="CONTROL",
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely -= 1
|
|
for i in [
|
|
"BY DOWNLOADING THE STABLE DIFFUSION WEIGHT FILES, YOU AGREE TO HAVE READ",
|
|
"AND ACCEPTED THE CREATIVEML RESPONSIBLE AI LICENSE LOCATED AT",
|
|
"https://huggingface.co/spaces/CompVis/stable-diffusion-license",
|
|
]:
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value=i,
|
|
editable=False,
|
|
color="CONTROL",
|
|
)
|
|
self.license_acceptance = self.add_widget_intelligent(
|
|
npyscreen.Checkbox,
|
|
name="I accept the CreativeML Responsible AI License",
|
|
value=not first_time,
|
|
relx=2,
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrely += 1
|
|
label = (
|
|
"DONE"
|
|
if program_opts.skip_sd_weights or program_opts.default_only
|
|
else "NEXT"
|
|
)
|
|
self.ok_button = self.add_widget_intelligent(
|
|
CenteredButtonPress,
|
|
name=label,
|
|
relx=(window_width - len(label)) // 2,
|
|
rely=-3,
|
|
when_pressed_function=self.on_ok,
|
|
)
|
|
|
|
def on_ok(self):
|
|
options = self.marshall_arguments()
|
|
if self.validate_field_values(options):
|
|
self.parentApp.new_opts = options
|
|
if hasattr(self.parentApp, "model_select"):
|
|
self.parentApp.setNextForm("MODELS")
|
|
else:
|
|
self.parentApp.setNextForm(None)
|
|
self.editing = False
|
|
else:
|
|
self.editing = True
|
|
|
|
def validate_field_values(self, opt: Namespace) -> bool:
|
|
bad_fields = []
|
|
if not opt.license_acceptance:
|
|
bad_fields.append(
|
|
"Please accept the license terms before proceeding to model downloads"
|
|
)
|
|
if not Path(opt.outdir).parent.exists():
|
|
bad_fields.append(
|
|
f"The output directory does not seem to be valid. Please check that {str(Path(opt.outdir).parent)} is an existing directory."
|
|
)
|
|
if not Path(opt.embedding_dir).parent.exists():
|
|
bad_fields.append(
|
|
f"The embedding directory does not seem to be valid. Please check that {str(Path(opt.embedding_dir).parent)} is an existing directory."
|
|
)
|
|
if len(bad_fields) > 0:
|
|
message = "The following problems were detected and must be corrected:\n"
|
|
for problem in bad_fields:
|
|
message += f"* {problem}\n"
|
|
npyscreen.notify_confirm(message)
|
|
return False
|
|
else:
|
|
return True
|
|
|
|
def marshall_arguments(self):
|
|
new_opts = Namespace()
|
|
|
|
for attr in [
|
|
"outdir",
|
|
"nsfw_checker",
|
|
"free_gpu_mem",
|
|
"max_loaded_models",
|
|
"xformers_enabled",
|
|
"always_use_cpu",
|
|
"embedding_dir",
|
|
"lora_dir",
|
|
]:
|
|
setattr(new_opts, attr, getattr(self, attr).value)
|
|
|
|
new_opts.hf_token = self.hf_token.value
|
|
new_opts.license_acceptance = self.license_acceptance.value
|
|
new_opts.precision = PRECISION_CHOICES[self.precision.value[0]]
|
|
|
|
# widget library workaround to make max_loaded_models an int rather than a float
|
|
new_opts.max_loaded_models = int(new_opts.max_loaded_models)
|
|
|
|
return new_opts
|
|
|
|
|
|
class EditOptApplication(npyscreen.NPSAppManaged):
|
|
def __init__(self, program_opts: Namespace, invokeai_opts: Namespace):
|
|
super().__init__()
|
|
self.program_opts = program_opts
|
|
self.invokeai_opts = invokeai_opts
|
|
self.user_cancelled = False
|
|
self.user_selections = default_user_selections(program_opts)
|
|
|
|
def onStart(self):
|
|
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
|
|
self.options = self.addForm(
|
|
"MAIN",
|
|
editOptsForm,
|
|
name="InvokeAI Startup Options",
|
|
)
|
|
if not (self.program_opts.skip_sd_weights or self.program_opts.default_only):
|
|
self.model_select = self.addForm(
|
|
"MODELS",
|
|
addModelsForm,
|
|
name="Install Stable Diffusion Models",
|
|
multipage=True,
|
|
)
|
|
|
|
def new_opts(self):
|
|
return self.options.marshall_arguments()
|
|
|
|
|
|
def edit_opts(program_opts: Namespace, invokeai_opts: Namespace) -> argparse.Namespace:
|
|
editApp = EditOptApplication(program_opts, invokeai_opts)
|
|
editApp.run()
|
|
return editApp.new_opts()
|
|
|
|
|
|
def default_startup_options(init_file: Path) -> Namespace:
|
|
opts = InvokeAIAppConfig(argv=[])
|
|
outdir = Path(opts.outdir)
|
|
if not outdir.is_absolute():
|
|
opts.outdir = str(config.root / opts.outdir)
|
|
if not init_file.exists():
|
|
opts.nsfw_checker = True
|
|
return opts
|
|
|
|
def default_user_selections(program_opts: Namespace) -> UserSelections:
|
|
return UserSelections(
|
|
install_models=default_dataset()
|
|
if program_opts.default_only
|
|
else recommended_datasets()
|
|
if program_opts.yes_to_all
|
|
else dict(),
|
|
purge_deleted_models=False,
|
|
scan_directory=None,
|
|
autoscan_on_startup=None,
|
|
)
|
|
|
|
|
|
# -------------------------------------
|
|
def initialize_rootdir(root: str, yes_to_all: bool = False):
|
|
print("** INITIALIZING INVOKEAI RUNTIME DIRECTORY **")
|
|
|
|
for name in (
|
|
"models",
|
|
"configs",
|
|
"embeddings",
|
|
"text-inversion-output",
|
|
"text-inversion-training-data",
|
|
):
|
|
os.makedirs(os.path.join(root, name), exist_ok=True)
|
|
|
|
configs_src = Path(configs.__path__[0])
|
|
configs_dest = Path(root) / "configs"
|
|
if not os.path.samefile(configs_src, configs_dest):
|
|
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
|
|
|
|
|
|
# -------------------------------------
|
|
def run_console_ui(
|
|
program_opts: Namespace, initfile: Path = None
|
|
) -> (Namespace, Namespace):
|
|
# parse_args() will read from init file if present
|
|
invokeai_opts = default_startup_options(initfile)
|
|
|
|
set_min_terminal_size(MIN_COLS, MIN_LINES)
|
|
|
|
# the install-models application spawns a subprocess to install
|
|
# models, and will crash unless this is set before running.
|
|
import torch
|
|
torch.multiprocessing.set_start_method("spawn")
|
|
|
|
editApp = EditOptApplication(program_opts, invokeai_opts)
|
|
editApp.run()
|
|
if editApp.user_cancelled:
|
|
return (None, None)
|
|
else:
|
|
return (editApp.new_opts, editApp.user_selections)
|
|
|
|
|
|
# -------------------------------------
|
|
def write_opts(opts: Namespace, init_file: Path):
|
|
"""
|
|
Update the invokeai.yaml file with values from current settings.
|
|
"""
|
|
|
|
# this will load current settings
|
|
config = InvokeAIAppConfig()
|
|
for key,value in opts.__dict__.items():
|
|
if hasattr(config,key):
|
|
setattr(config,key,value)
|
|
|
|
with open(init_file,'w', encoding='utf-8') as file:
|
|
file.write(config.to_yaml())
|
|
|
|
# -------------------------------------
|
|
def default_output_dir() -> Path:
|
|
return config.root / "outputs"
|
|
|
|
# -------------------------------------
|
|
def default_embedding_dir() -> Path:
|
|
return config.root / "embeddings"
|
|
|
|
# -------------------------------------
|
|
def default_lora_dir() -> Path:
|
|
return config.root / "loras"
|
|
|
|
# -------------------------------------
|
|
def write_default_options(program_opts: Namespace, initfile: Path):
|
|
opt = default_startup_options(initfile)
|
|
write_opts(opt, initfile)
|
|
|
|
# -------------------------------------
|
|
# Here we bring in
|
|
# the legacy Args object in order to parse
|
|
# the old init file and write out the new
|
|
# yaml format.
|
|
def migrate_init_file(legacy_format:Path):
|
|
old = legacy_parser.parse_args([f'@{str(legacy_format)}'])
|
|
new = InvokeAIAppConfig(conf={})
|
|
|
|
fields = list(get_type_hints(InvokeAIAppConfig).keys())
|
|
for attr in fields:
|
|
if hasattr(old,attr):
|
|
setattr(new,attr,getattr(old,attr))
|
|
|
|
# a few places where the field names have changed and we have to
|
|
# manually add in the new names/values
|
|
new.nsfw_checker = old.safety_checker
|
|
new.xformers_enabled = old.xformers
|
|
new.conf_path = old.conf
|
|
new.embedding_dir = old.embedding_path
|
|
|
|
invokeai_yaml = legacy_format.parent / 'invokeai.yaml'
|
|
with open(invokeai_yaml,"w", encoding="utf-8") as outfile:
|
|
outfile.write(new.to_yaml())
|
|
|
|
legacy_format.replace(legacy_format.parent / 'invokeai.init.old')
|
|
|
|
# -------------------------------------
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="InvokeAI model downloader")
|
|
parser.add_argument(
|
|
"--skip-sd-weights",
|
|
dest="skip_sd_weights",
|
|
action=argparse.BooleanOptionalAction,
|
|
default=False,
|
|
help="skip downloading the large Stable Diffusion weight files",
|
|
)
|
|
parser.add_argument(
|
|
"--skip-support-models",
|
|
dest="skip_support_models",
|
|
action=argparse.BooleanOptionalAction,
|
|
default=False,
|
|
help="skip downloading the support models",
|
|
)
|
|
parser.add_argument(
|
|
"--full-precision",
|
|
dest="full_precision",
|
|
action=argparse.BooleanOptionalAction,
|
|
type=bool,
|
|
default=False,
|
|
help="use 32-bit weights instead of faster 16-bit weights",
|
|
)
|
|
parser.add_argument(
|
|
"--yes",
|
|
"-y",
|
|
dest="yes_to_all",
|
|
action="store_true",
|
|
help='answer "yes" to all prompts',
|
|
)
|
|
parser.add_argument(
|
|
"--default_only",
|
|
action="store_true",
|
|
help="when --yes specified, only install the default model",
|
|
)
|
|
parser.add_argument(
|
|
"--config_file",
|
|
"-c",
|
|
dest="config_file",
|
|
type=str,
|
|
default=None,
|
|
help="path to configuration file to create",
|
|
)
|
|
parser.add_argument(
|
|
"--root_dir",
|
|
dest="root",
|
|
type=str,
|
|
default=None,
|
|
help="path to root of install directory",
|
|
)
|
|
opt = parser.parse_args()
|
|
|
|
# setting a global here
|
|
global config
|
|
config.root = Path(os.path.expanduser(get_root(opt.root) or ""))
|
|
|
|
errors = set()
|
|
|
|
try:
|
|
models_to_download = default_user_selections(opt)
|
|
|
|
# We check for to see if the runtime directory is correctly initialized.
|
|
old_init_file = Path(config.root, 'invokeai.init')
|
|
new_init_file = Path(config.root, 'invokeai.yaml')
|
|
if old_init_file.exists() and not new_init_file.exists():
|
|
print('** Migrating invokeai.init to invokeai.yaml')
|
|
migrate_init_file(old_init_file)
|
|
config = get_invokeai_config() # reread defaults
|
|
|
|
|
|
if not config.model_conf_path.exists():
|
|
initialize_rootdir(config.root, opt.yes_to_all)
|
|
|
|
if opt.yes_to_all:
|
|
write_default_options(opt, new_init_file)
|
|
init_options = Namespace(
|
|
precision="float32" if opt.full_precision else "float16"
|
|
)
|
|
else:
|
|
init_options, models_to_download = run_console_ui(opt, new_init_file)
|
|
if init_options:
|
|
write_opts(init_options, new_init_file)
|
|
else:
|
|
print(
|
|
'\n** CANCELLED AT USER\'S REQUEST. USE THE "invoke.sh" LAUNCHER TO RUN LATER **\n'
|
|
)
|
|
sys.exit(0)
|
|
|
|
if opt.skip_support_models:
|
|
print("\n** SKIPPING SUPPORT MODEL DOWNLOADS PER USER REQUEST **")
|
|
else:
|
|
print("\n** DOWNLOADING SUPPORT MODELS **")
|
|
download_bert()
|
|
download_sd1_clip()
|
|
download_sd2_clip()
|
|
download_realesrgan()
|
|
download_gfpgan()
|
|
download_codeformer()
|
|
download_clipseg()
|
|
download_safety_checker()
|
|
download_vaes()
|
|
|
|
if opt.skip_sd_weights:
|
|
print("\n** SKIPPING DIFFUSION WEIGHTS DOWNLOAD PER USER REQUEST **")
|
|
elif models_to_download:
|
|
print("\n** DOWNLOADING DIFFUSION WEIGHTS **")
|
|
process_and_execute(opt, models_to_download)
|
|
|
|
postscript(errors=errors)
|
|
except KeyboardInterrupt:
|
|
print("\nGoodbye! Come back soon.")
|
|
|
|
|
|
# -------------------------------------
|
|
if __name__ == "__main__":
|
|
main()
|