mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
250 lines
10 KiB
Python
250 lines
10 KiB
Python
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654), 2023 Kent Keirsey (https://github.com/hipsterusername), 2024 Lincoln Stein
|
|
|
|
|
|
from typing import Literal, Optional, Union
|
|
|
|
from fastapi import Body, Path, Query, Response
|
|
from fastapi.routing import APIRouter
|
|
from pydantic import BaseModel, parse_obj_as
|
|
from starlette.exceptions import HTTPException
|
|
|
|
from invokeai.backend import BaseModelType, ModelType
|
|
from invokeai.backend.model_management.models import (
|
|
OPENAPI_MODEL_CONFIGS,
|
|
SchedulerPredictionType
|
|
)
|
|
|
|
from ..dependencies import ApiDependencies
|
|
|
|
models_router = APIRouter(prefix="/v1/models", tags=["models"])
|
|
|
|
UpdateModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
|
|
ImportModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
|
|
ConvertModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
|
|
|
|
class ModelsList(BaseModel):
|
|
models: list[Union[tuple(OPENAPI_MODEL_CONFIGS)]]
|
|
|
|
@models_router.get(
|
|
"/{base_model}/{model_type}",
|
|
operation_id="list_models",
|
|
responses={200: {"model": ModelsList }},
|
|
)
|
|
async def list_models(
|
|
base_model: Optional[BaseModelType] = Path(
|
|
default=None, description="Base model"
|
|
),
|
|
model_type: Optional[ModelType] = Path(
|
|
default=None, description="The type of model to get"
|
|
),
|
|
) -> ModelsList:
|
|
"""Gets a list of models"""
|
|
models_raw = ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type)
|
|
models = parse_obj_as(ModelsList, { "models": models_raw })
|
|
return models
|
|
|
|
@models_router.patch(
|
|
"/{base_model}/{model_type}/{model_name}",
|
|
operation_id="update_model",
|
|
responses={200: {"description" : "The model was updated successfully"},
|
|
404: {"description" : "The model could not be found"},
|
|
400: {"description" : "Bad request"}
|
|
},
|
|
status_code = 200,
|
|
response_model = UpdateModelResponse,
|
|
)
|
|
async def update_model(
|
|
base_model: BaseModelType = Path(default='sd-1', description="Base model"),
|
|
model_type: ModelType = Path(default='main', description="The type of model"),
|
|
model_name: str = Path(default=None, description="model name"),
|
|
info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"),
|
|
) -> UpdateModelResponse:
|
|
""" Add Model """
|
|
try:
|
|
ApiDependencies.invoker.services.model_manager.update_model(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
model_attributes=info.dict()
|
|
)
|
|
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
)
|
|
model_response = parse_obj_as(UpdateModelResponse, model_raw)
|
|
except KeyError as e:
|
|
raise HTTPException(status_code=404, detail=str(e))
|
|
except ValueError as e:
|
|
raise HTTPException(status_code=400, detail=str(e))
|
|
|
|
return model_response
|
|
|
|
@models_router.post(
|
|
"/",
|
|
operation_id="import_model",
|
|
responses= {
|
|
201: {"description" : "The model imported successfully"},
|
|
404: {"description" : "The model could not be found"},
|
|
424: {"description" : "The model appeared to import successfully, but could not be found in the model manager"},
|
|
409: {"description" : "There is already a model corresponding to this path or repo_id"},
|
|
},
|
|
status_code=201,
|
|
response_model=ImportModelResponse
|
|
)
|
|
async def import_model(
|
|
location: str = Body(description="A model path, repo_id or URL to import"),
|
|
prediction_type: Optional[Literal['v_prediction','epsilon','sample']] = \
|
|
Body(description='Prediction type for SDv2 checkpoint files', default="v_prediction"),
|
|
) -> ImportModelResponse:
|
|
""" Add a model using its local path, repo_id, or remote URL """
|
|
|
|
items_to_import = {location}
|
|
prediction_types = { x.value: x for x in SchedulerPredictionType }
|
|
logger = ApiDependencies.invoker.services.logger
|
|
|
|
try:
|
|
installed_models = ApiDependencies.invoker.services.model_manager.heuristic_import(
|
|
items_to_import = items_to_import,
|
|
prediction_type_helper = lambda x: prediction_types.get(prediction_type)
|
|
)
|
|
info = installed_models.get(location)
|
|
|
|
if not info:
|
|
logger.error("Import failed")
|
|
raise HTTPException(status_code=424)
|
|
|
|
logger.info(f'Successfully imported {location}, got {info}')
|
|
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
|
|
model_name=info.name,
|
|
base_model=info.base_model,
|
|
model_type=info.model_type
|
|
)
|
|
return parse_obj_as(ImportModelResponse, model_raw)
|
|
|
|
except KeyError as e:
|
|
logger.error(str(e))
|
|
raise HTTPException(status_code=404, detail=str(e))
|
|
except ValueError as e:
|
|
logger.error(str(e))
|
|
raise HTTPException(status_code=409, detail=str(e))
|
|
|
|
|
|
@models_router.delete(
|
|
"/{base_model}/{model_type}/{model_name}",
|
|
operation_id="del_model",
|
|
responses={
|
|
204: {
|
|
"description": "Model deleted successfully"
|
|
},
|
|
404: {
|
|
"description": "Model not found"
|
|
}
|
|
},
|
|
)
|
|
async def delete_model(
|
|
base_model: BaseModelType = Path(description="Base model"),
|
|
model_type: ModelType = Path(description="The type of model"),
|
|
model_name: str = Path(description="model name"),
|
|
) -> Response:
|
|
"""Delete Model"""
|
|
logger = ApiDependencies.invoker.services.logger
|
|
|
|
try:
|
|
ApiDependencies.invoker.services.model_manager.del_model(model_name,
|
|
base_model = base_model,
|
|
model_type = model_type
|
|
)
|
|
logger.info(f"Deleted model: {model_name}")
|
|
return Response(status_code=204)
|
|
except KeyError:
|
|
logger.error(f"Model not found: {model_name}")
|
|
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
|
|
|
|
@models_router.put(
|
|
"/convert/{base_model}/{model_type}/{model_name}",
|
|
operation_id="convert_model",
|
|
responses={
|
|
200: { "description": "Model converted successfully" },
|
|
400: {"description" : "Bad request" },
|
|
404: { "description": "Model not found" },
|
|
},
|
|
status_code = 200,
|
|
response_model = Union[tuple(OPENAPI_MODEL_CONFIGS)],
|
|
)
|
|
async def convert_model(
|
|
base_model: BaseModelType = Path(description="Base model"),
|
|
model_type: ModelType = Path(description="The type of model"),
|
|
model_name: str = Path(description="model name"),
|
|
) -> ConvertModelResponse:
|
|
"""Convert a checkpoint model into a diffusers model"""
|
|
logger = ApiDependencies.invoker.services.logger
|
|
try:
|
|
logger.info(f"Converting model: {model_name}")
|
|
ApiDependencies.invoker.services.model_manager.convert_model(model_name,
|
|
base_model = base_model,
|
|
model_type = model_type
|
|
)
|
|
model_raw = ApiDependencies.invoker.services.model_manager.list_model(model_name,
|
|
base_model = base_model,
|
|
model_type = model_type)
|
|
response = parse_obj_as(ConvertModelResponse, model_raw)
|
|
except KeyError:
|
|
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
|
|
except ValueError as e:
|
|
raise HTTPException(status_code=400, detail=str(e))
|
|
return response
|
|
|
|
# @socketio.on("mergeDiffusersModels")
|
|
# def merge_diffusers_models(model_merge_info: dict):
|
|
# try:
|
|
# models_to_merge = model_merge_info["models_to_merge"]
|
|
# model_ids_or_paths = [
|
|
# self.generate.model_manager.model_name_or_path(x)
|
|
# for x in models_to_merge
|
|
# ]
|
|
# merged_pipe = merge_diffusion_models(
|
|
# model_ids_or_paths,
|
|
# model_merge_info["alpha"],
|
|
# model_merge_info["interp"],
|
|
# model_merge_info["force"],
|
|
# )
|
|
|
|
# dump_path = global_models_dir() / "merged_models"
|
|
# if model_merge_info["model_merge_save_path"] is not None:
|
|
# dump_path = Path(model_merge_info["model_merge_save_path"])
|
|
|
|
# os.makedirs(dump_path, exist_ok=True)
|
|
# dump_path = dump_path / model_merge_info["merged_model_name"]
|
|
# merged_pipe.save_pretrained(dump_path, safe_serialization=1)
|
|
|
|
# merged_model_config = dict(
|
|
# model_name=model_merge_info["merged_model_name"],
|
|
# description=f'Merge of models {", ".join(models_to_merge)}',
|
|
# commit_to_conf=opt.conf,
|
|
# )
|
|
|
|
# if vae := self.generate.model_manager.config[models_to_merge[0]].get(
|
|
# "vae", None
|
|
# ):
|
|
# print(f">> Using configured VAE assigned to {models_to_merge[0]}")
|
|
# merged_model_config.update(vae=vae)
|
|
|
|
# self.generate.model_manager.import_diffuser_model(
|
|
# dump_path, **merged_model_config
|
|
# )
|
|
# new_model_list = self.generate.model_manager.list_models()
|
|
|
|
# socketio.emit(
|
|
# "modelsMerged",
|
|
# {
|
|
# "merged_models": models_to_merge,
|
|
# "merged_model_name": model_merge_info["merged_model_name"],
|
|
# "model_list": new_model_list,
|
|
# "update": True,
|
|
# },
|
|
# )
|
|
# print(f">> Models Merged: {models_to_merge}")
|
|
# print(f">> New Model Added: {model_merge_info['merged_model_name']}")
|
|
# except Exception as e:
|