InvokeAI/invokeai/backend/model_management/model_cache.py
2023-08-15 21:56:19 -04:00

461 lines
16 KiB
Python

"""
Manage a RAM cache of diffusion/transformer models for fast switching.
They are moved between GPU VRAM and CPU RAM as necessary. If the cache
grows larger than a preset maximum, then the least recently used
model will be cleared and (re)loaded from disk when next needed.
The cache returns context manager generators designed to load the
model into the GPU within the context, and unload outside the
context. Use like this:
cache = ModelCache(max_cache_size=7.5)
with cache.get_model('runwayml/stable-diffusion-1-5') as SD1,
cache.get_model('stabilityai/stable-diffusion-2') as SD2:
do_something_in_GPU(SD1,SD2)
"""
import gc
import os
import sys
import hashlib
from contextlib import suppress
from dataclasses import dataclass, field
from pathlib import Path
from typing import Dict, Union, types, Optional, Type, Any
import torch
import invokeai.backend.util.logging as logger
from .models import BaseModelType, ModelType, SubModelType, ModelBase
# Maximum size of the cache, in gigs
# Default is roughly enough to hold three fp16 diffusers models in RAM simultaneously
DEFAULT_MAX_CACHE_SIZE = 6.0
# amount of GPU memory to hold in reserve for use by generations (GB)
DEFAULT_MAX_VRAM_CACHE_SIZE = 2.75
# actual size of a gig
GIG = 1073741824
@dataclass
class CacheStats(object):
hits: int = 0 # cache hits
misses: int = 0 # cache misses
high_watermark: int = 0 # amount of cache used
in_cache: int = 0 # number of models in cache
cleared: int = 0 # number of models cleared to make space
cache_size: int = 0 # total size of cache
# {submodel_key => size}
loaded_model_sizes: Dict[str, int] = field(default_factory=dict)
class ModelLocker(object):
"Forward declaration"
pass
class ModelCache(object):
"Forward declaration"
pass
class _CacheRecord:
size: int
model: Any
cache: ModelCache
_locks: int
def __init__(self, cache, model: Any, size: int):
self.size = size
self.model = model
self.cache = cache
self._locks = 0
def lock(self):
self._locks += 1
def unlock(self):
self._locks -= 1
assert self._locks >= 0
@property
def locked(self):
return self._locks > 0
@property
def loaded(self):
if self.model is not None and hasattr(self.model, "device"):
return self.model.device != self.cache.storage_device
else:
return False
class ModelCache(object):
def __init__(
self,
max_cache_size: float = DEFAULT_MAX_CACHE_SIZE,
max_vram_cache_size: float = DEFAULT_MAX_VRAM_CACHE_SIZE,
execution_device: torch.device = torch.device("cuda"),
storage_device: torch.device = torch.device("cpu"),
precision: torch.dtype = torch.float16,
sequential_offload: bool = False,
lazy_offloading: bool = True,
sha_chunksize: int = 16777216,
logger: types.ModuleType = logger,
):
"""
:param max_cache_size: Maximum size of the RAM cache [6.0 GB]
:param execution_device: Torch device to load active model into [torch.device('cuda')]
:param storage_device: Torch device to save inactive model in [torch.device('cpu')]
:param precision: Precision for loaded models [torch.float16]
:param lazy_offloading: Keep model in VRAM until another model needs to be loaded
:param sequential_offload: Conserve VRAM by loading and unloading each stage of the pipeline sequentially
:param sha_chunksize: Chunksize to use when calculating sha256 model hash
"""
self.model_infos: Dict[str, ModelBase] = dict()
# allow lazy offloading only when vram cache enabled
self.lazy_offloading = lazy_offloading and max_vram_cache_size > 0
self.precision: torch.dtype = precision
self.max_cache_size: float = max_cache_size
self.max_vram_cache_size: float = max_vram_cache_size
self.execution_device: torch.device = execution_device
self.storage_device: torch.device = storage_device
self.sha_chunksize = sha_chunksize
self.logger = logger
# used for stats collection
self.stats = None
self._cached_models = dict()
self._cache_stack = list()
def get_key(
self,
model_path: str,
base_model: BaseModelType,
model_type: ModelType,
submodel_type: Optional[SubModelType] = None,
):
key = f"{model_path}:{base_model}:{model_type}"
if submodel_type:
key += f":{submodel_type}"
return key
def _get_model_info(
self,
model_path: str,
model_class: Type[ModelBase],
base_model: BaseModelType,
model_type: ModelType,
):
model_info_key = self.get_key(
model_path=model_path,
base_model=base_model,
model_type=model_type,
submodel_type=None,
)
if model_info_key not in self.model_infos:
self.model_infos[model_info_key] = model_class(
model_path,
base_model,
model_type,
)
return self.model_infos[model_info_key]
# TODO: args
def get_model(
self,
model_path: Union[str, Path],
model_class: Type[ModelBase],
base_model: BaseModelType,
model_type: ModelType,
submodel: Optional[SubModelType] = None,
gpu_load: bool = True,
) -> Any:
if not isinstance(model_path, Path):
model_path = Path(model_path)
if not os.path.exists(model_path):
raise Exception(f"Model not found: {model_path}")
model_info = self._get_model_info(
model_path=model_path,
model_class=model_class,
base_model=base_model,
model_type=model_type,
)
key = self.get_key(
model_path=model_path,
base_model=base_model,
model_type=model_type,
submodel_type=submodel,
)
# TODO: lock for no copies on simultaneous calls?
cache_entry = self._cached_models.get(key, None)
if cache_entry is None:
self.logger.info(
f"Loading model {model_path}, type {base_model.value}:{model_type.value}{':'+submodel.value if submodel else ''}"
)
if self.stats:
self.stats.misses += 1
# this will remove older cached models until
# there is sufficient room to load the requested model
self._make_cache_room(model_info.get_size(submodel))
# clean memory to make MemoryUsage() more accurate
gc.collect()
model = model_info.get_model(child_type=submodel, torch_dtype=self.precision)
if mem_used := model_info.get_size(submodel):
self.logger.debug(f"CPU RAM used for load: {(mem_used/GIG):.2f} GB")
cache_entry = _CacheRecord(self, model, mem_used)
self._cached_models[key] = cache_entry
else:
if self.stats:
self.stats.hits += 1
if self.stats:
self.stats.cache_size = self.max_cache_size * GIG
self.stats.high_watermark = max(self.stats.high_watermark, self._cache_size())
self.stats.in_cache = len(self._cached_models)
self.stats.loaded_model_sizes[key] = max(
self.stats.loaded_model_sizes.get("key", 0), model_info.get_size(submodel)
)
with suppress(Exception):
self._cache_stack.remove(key)
self._cache_stack.append(key)
return self.ModelLocker(self, key, cache_entry.model, gpu_load, cache_entry.size)
class ModelLocker(object):
def __init__(self, cache, key, model, gpu_load, size_needed):
"""
:param cache: The model_cache object
:param key: The key of the model to lock in GPU
:param model: The model to lock
:param gpu_load: True if load into gpu
:param size_needed: Size of the model to load
"""
self.gpu_load = gpu_load
self.cache = cache
self.key = key
self.model = model
self.size_needed = size_needed
self.cache_entry = self.cache._cached_models[self.key]
def __enter__(self) -> Any:
if not hasattr(self.model, "to"):
return self.model
# NOTE that the model has to have the to() method in order for this
# code to move it into GPU!
if self.gpu_load:
self.cache_entry.lock()
try:
if self.cache.lazy_offloading:
self.cache._offload_unlocked_models(self.size_needed)
if self.model.device != self.cache.execution_device:
self.cache.logger.debug(f"Moving {self.key} into {self.cache.execution_device}")
with VRAMUsage() as mem:
self.model.to(self.cache.execution_device) # move into GPU
self.cache.logger.debug(f"GPU VRAM used for load: {(mem.vram_used/GIG):.2f} GB")
self.cache.logger.debug(f"Locking {self.key} in {self.cache.execution_device}")
self.cache._print_cuda_stats()
except:
self.cache_entry.unlock()
raise
# TODO: not fully understand
# in the event that the caller wants the model in RAM, we
# move it into CPU if it is in GPU and not locked
elif self.cache_entry.loaded and not self.cache_entry.locked:
self.model.to(self.cache.storage_device)
return self.model
def __exit__(self, type, value, traceback):
if not hasattr(self.model, "to"):
return
self.cache_entry.unlock()
if not self.cache.lazy_offloading:
self.cache._offload_unlocked_models()
self.cache._print_cuda_stats()
# TODO: should it be called untrack_model?
def uncache_model(self, cache_id: str):
with suppress(ValueError):
self._cache_stack.remove(cache_id)
self._cached_models.pop(cache_id, None)
def model_hash(
self,
model_path: Union[str, Path],
) -> str:
"""
Given the HF repo id or path to a model on disk, returns a unique
hash. Works for legacy checkpoint files, HF models on disk, and HF repo IDs
:param model_path: Path to model file/directory on disk.
"""
return self._local_model_hash(model_path)
def cache_size(self) -> float:
"""Return the current size of the cache, in GB."""
return self._cache_size() / GIG
def _has_cuda(self) -> bool:
return self.execution_device.type == "cuda"
def _print_cuda_stats(self):
vram = "%4.2fG" % (torch.cuda.memory_allocated() / GIG)
ram = "%4.2fG" % self.cache_size()
cached_models = 0
loaded_models = 0
locked_models = 0
for model_info in self._cached_models.values():
cached_models += 1
if model_info.loaded:
loaded_models += 1
if model_info.locked:
locked_models += 1
self.logger.debug(
f"Current VRAM/RAM usage: {vram}/{ram}; cached_models/loaded_models/locked_models/ = {cached_models}/{loaded_models}/{locked_models}"
)
def _cache_size(self) -> int:
return sum([m.size for m in self._cached_models.values()])
def _make_cache_room(self, model_size):
# calculate how much memory this model will require
# multiplier = 2 if self.precision==torch.float32 else 1
bytes_needed = model_size
maximum_size = self.max_cache_size * GIG # stored in GB, convert to bytes
current_size = self._cache_size()
if current_size + bytes_needed > maximum_size:
self.logger.debug(
f"Max cache size exceeded: {(current_size/GIG):.2f}/{self.max_cache_size:.2f} GB, need an additional {(bytes_needed/GIG):.2f} GB"
)
self.logger.debug(f"Before unloading: cached_models={len(self._cached_models)}")
pos = 0
while current_size + bytes_needed > maximum_size and pos < len(self._cache_stack):
model_key = self._cache_stack[pos]
cache_entry = self._cached_models[model_key]
refs = sys.getrefcount(cache_entry.model)
# manualy clear local variable references of just finished function calls
# for some reason python don't want to collect it even by gc.collect() immidiately
if refs > 2:
while True:
cleared = False
for referrer in gc.get_referrers(cache_entry.model):
if type(referrer).__name__ == "frame":
# RuntimeError: cannot clear an executing frame
with suppress(RuntimeError):
referrer.clear()
cleared = True
# break
# repeat if referrers changes(due to frame clear), else exit loop
if cleared:
gc.collect()
else:
break
device = cache_entry.model.device if hasattr(cache_entry.model, "device") else None
self.logger.debug(
f"Model: {model_key}, locks: {cache_entry._locks}, device: {device}, loaded: {cache_entry.loaded}, refs: {refs}"
)
# 2 refs:
# 1 from cache_entry
# 1 from getrefcount function
# 1 from onnx runtime object
if not cache_entry.locked and refs <= 3 if "onnx" in model_key else 2:
self.logger.debug(
f"Unloading model {model_key} to free {(model_size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)"
)
current_size -= cache_entry.size
if self.stats:
self.stats.cleared += 1
del self._cache_stack[pos]
del self._cached_models[model_key]
del cache_entry
else:
pos += 1
gc.collect()
torch.cuda.empty_cache()
self.logger.debug(f"After unloading: cached_models={len(self._cached_models)}")
def _offload_unlocked_models(self, size_needed: int = 0):
reserved = self.max_vram_cache_size * GIG
vram_in_use = torch.cuda.memory_allocated()
self.logger.debug(f"{(vram_in_use/GIG):.2f}GB VRAM used for models; max allowed={(reserved/GIG):.2f}GB")
for model_key, cache_entry in sorted(self._cached_models.items(), key=lambda x: x[1].size):
if vram_in_use <= reserved:
break
if not cache_entry.locked and cache_entry.loaded:
self.logger.debug(f"Offloading {model_key} from {self.execution_device} into {self.storage_device}")
with VRAMUsage() as mem:
cache_entry.model.to(self.storage_device)
self.logger.debug(f"GPU VRAM freed: {(mem.vram_used/GIG):.2f} GB")
vram_in_use += mem.vram_used # note vram_used is negative
self.logger.debug(f"{(vram_in_use/GIG):.2f}GB VRAM used for models; max allowed={(reserved/GIG):.2f}GB")
gc.collect()
torch.cuda.empty_cache()
def _local_model_hash(self, model_path: Union[str, Path]) -> str:
sha = hashlib.sha256()
path = Path(model_path)
hashpath = path / "checksum.sha256"
if hashpath.exists() and path.stat().st_mtime <= hashpath.stat().st_mtime:
with open(hashpath) as f:
hash = f.read()
return hash
self.logger.debug(f"computing hash of model {path.name}")
for file in list(path.rglob("*.ckpt")) + list(path.rglob("*.safetensors")) + list(path.rglob("*.pth")):
with open(file, "rb") as f:
while chunk := f.read(self.sha_chunksize):
sha.update(chunk)
hash = sha.hexdigest()
with open(hashpath, "w") as f:
f.write(hash)
return hash
class VRAMUsage(object):
def __init__(self):
self.vram = None
self.vram_used = 0
def __enter__(self):
self.vram = torch.cuda.memory_allocated()
return self
def __exit__(self, *args):
self.vram_used = torch.cuda.memory_allocated() - self.vram