InvokeAI/invokeai/app/invocations/collections.py
psychedelicious fa884134d9 feat: rename ui_type_hint to ui_type
Just a bit more succinct while not losing any clarity.
2023-08-16 09:54:38 +10:00

89 lines
3.3 KiB
Python

# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
from typing import Literal
import numpy as np
from pydantic import validator
from invokeai.app.invocations.primitives import ImageCollectionOutput, ImageField, IntegerCollectionOutput
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from .baseinvocation import BaseInvocation, InputField, InvocationContext, UIType, tags, title
@title("Integer Range")
@tags("collection", "integer", "range")
class RangeInvocation(BaseInvocation):
"""Creates a range of numbers from start to stop with step"""
type: Literal["range"] = "range"
# Inputs
start: int = InputField(default=0, description="The start of the range")
stop: int = InputField(default=10, description="The stop of the range")
step: int = InputField(default=1, description="The step of the range")
@validator("stop")
def stop_gt_start(cls, v, values):
if "start" in values and v <= values["start"]:
raise ValueError("stop must be greater than start")
return v
def invoke(self, context: InvocationContext) -> IntegerCollectionOutput:
return IntegerCollectionOutput(collection=list(range(self.start, self.stop, self.step)))
@title("Integer Range of Size")
@tags("range", "integer", "size", "collection")
class RangeOfSizeInvocation(BaseInvocation):
"""Creates a range from start to start + size with step"""
type: Literal["range_of_size"] = "range_of_size"
# Inputs
start: int = InputField(default=0, description="The start of the range")
size: int = InputField(default=1, description="The number of values")
step: int = InputField(default=1, description="The step of the range")
def invoke(self, context: InvocationContext) -> IntegerCollectionOutput:
return IntegerCollectionOutput(collection=list(range(self.start, self.start + self.size, self.step)))
@title("Random Range")
@tags("range", "integer", "random", "collection")
class RandomRangeInvocation(BaseInvocation):
"""Creates a collection of random numbers"""
type: Literal["random_range"] = "random_range"
# Inputs
low: int = InputField(default=0, description="The inclusive low value")
high: int = InputField(default=np.iinfo(np.int32).max, description="The exclusive high value")
size: int = InputField(default=1, description="The number of values to generate")
seed: int = InputField(
ge=0,
le=SEED_MAX,
description="The seed for the RNG (omit for random)",
default_factory=get_random_seed,
)
def invoke(self, context: InvocationContext) -> IntegerCollectionOutput:
rng = np.random.default_rng(self.seed)
return IntegerCollectionOutput(collection=list(rng.integers(low=self.low, high=self.high, size=self.size)))
@title("Image Collection")
@tags("image", "collection")
class ImageCollectionInvocation(BaseInvocation):
"""Load a collection of images and provide it as output."""
type: Literal["image_collection"] = "image_collection"
# Inputs
images: list[ImageField] = InputField(
default=[], description="The image collection to load", ui_type=UIType.ImageCollection
)
def invoke(self, context: InvocationContext) -> ImageCollectionOutput:
return ImageCollectionOutput(collection=self.images)