InvokeAI/scripts/dream.py
2022-08-28 17:11:24 +02:00

516 lines
16 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
import argparse
import shlex
import os
import sys
import copy
import warnings
import ldm.dream.readline
from ldm.dream.pngwriter import PngWriter, PromptFormatter
debugging = False
def main():
"""Initialize command-line parsers and the diffusion model"""
arg_parser = create_argv_parser()
opt = arg_parser.parse_args()
if opt.laion400m:
# defaults suitable to the older latent diffusion weights
width = 256
height = 256
config = 'configs/latent-diffusion/txt2img-1p4B-eval.yaml'
weights = 'models/ldm/text2img-large/model.ckpt'
else:
# some defaults suitable for stable diffusion weights
width = 512
height = 512
config = 'configs/stable-diffusion/v1-inference.yaml'
weights = 'models/ldm/stable-diffusion-v1/model.ckpt'
print('* Initializing, be patient...\n')
sys.path.append('.')
from pytorch_lightning import logging
from ldm.simplet2i import T2I
# these two lines prevent a horrible warning message from appearing
# when the frozen CLIP tokenizer is imported
import transformers
transformers.logging.set_verbosity_error()
# creating a simple text2image object with a handful of
# defaults passed on the command line.
# additional parameters will be added (or overriden) during
# the user input loop
t2i = T2I(
width=width,
height=height,
sampler_name=opt.sampler_name,
weights=weights,
full_precision=opt.full_precision,
config=config,
latent_diffusion_weights=opt.laion400m, # this is solely for recreating the prompt
embedding_path=opt.embedding_path,
device=opt.device,
)
# make sure the output directory exists
if not os.path.exists(opt.outdir):
os.makedirs(opt.outdir)
# gets rid of annoying messages about random seed
logging.getLogger('pytorch_lightning').setLevel(logging.ERROR)
infile = None
try:
if opt.infile is not None:
infile = open(opt.infile, 'r')
except FileNotFoundError as e:
print(e)
exit(-1)
# preload the model
t2i.load_model()
# load GFPGAN if requested
if opt.use_gfpgan:
print('\n* --gfpgan was specified, loading gfpgan...')
with warnings.catch_warnings():
warnings.filterwarnings('ignore', category=DeprecationWarning)
try:
model_path = os.path.join(
opt.gfpgan_dir, opt.gfpgan_model_path
)
if not os.path.isfile(model_path):
raise Exception(
'GFPGAN model not found at path ' + model_path
)
sys.path.append(os.path.abspath(opt.gfpgan_dir))
from gfpgan import GFPGANer
bg_upsampler = load_gfpgan_bg_upsampler(
opt.gfpgan_bg_upsampler, opt.gfpgan_bg_tile
)
t2i.gfpgan = GFPGANer(
model_path=model_path,
upscale=opt.gfpgan_upscale,
arch='clean',
channel_multiplier=2,
bg_upsampler=bg_upsampler,
)
except Exception:
import traceback
print('Error loading GFPGAN:', file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
print(
"\n* Initialization done! Awaiting your command (-h for help, 'q' to quit, 'cd' to change output dir, 'pwd' to print output dir)..."
)
log_path = os.path.join(opt.outdir, 'dream_log.txt')
with open(log_path, 'a') as log:
cmd_parser = create_cmd_parser()
main_loop(t2i, opt.outdir, cmd_parser, log, infile)
log.close()
if infile:
infile.close()
def main_loop(t2i, outdir, parser, log, infile):
"""prompt/read/execute loop"""
done = False
last_seeds = []
while not done:
try:
command = infile.readline() if infile else input('dream> ')
except EOFError:
done = True
break
if infile and len(command) == 0:
done = True
break
if command.startswith(('#', '//')):
continue
# before splitting, escape single quotes so as not to mess
# up the parser
command = command.replace("'", "\\'")
try:
elements = shlex.split(command)
except ValueError as e:
print(str(e))
continue
if len(elements) == 0:
continue
if elements[0] == 'q':
done = True
break
if elements[0] == 'cd' and len(elements) > 1:
if os.path.exists(elements[1]):
print(f'setting image output directory to {elements[1]}')
outdir = elements[1]
else:
print(f'directory {elements[1]} does not exist')
continue
if elements[0] == 'pwd':
print(f'current output directory is {outdir}')
continue
if elements[0].startswith(
'!dream'
): # in case a stored prompt still contains the !dream command
elements.pop(0)
# rearrange the arguments to mimic how it works in the Dream bot.
switches = ['']
switches_started = False
for el in elements:
if el[0] == '-' and not switches_started:
switches_started = True
if switches_started:
switches.append(el)
else:
switches[0] += el
switches[0] += ' '
switches[0] = switches[0][: len(switches[0]) - 1]
try:
opt = parser.parse_args(switches)
except SystemExit:
parser.print_help()
continue
if len(opt.prompt) == 0:
print('Try again with a prompt!')
continue
if opt.seed is not None and opt.seed < 0: # retrieve previous value!
try:
opt.seed = last_seeds[opt.seed]
print(f'reusing previous seed {opt.seed}')
except IndexError:
print(f'No previous seed at position {opt.seed} found')
opt.seed = None
normalized_prompt = PromptFormatter(t2i, opt).normalize_prompt()
individual_images = not opt.grid
try:
file_writer = PngWriter(outdir, normalized_prompt, opt.batch_size)
callback = file_writer.write_image if individual_images else None
image_list = t2i.prompt2image(image_callback=callback, **vars(opt))
results = (
file_writer.files_written if individual_images else image_list
)
if opt.grid and len(results) > 0:
grid_img = file_writer.make_grid([r[0] for r in results])
filename = file_writer.unique_filename(results[0][1])
seeds = [a[1] for a in results]
results = [[filename, seeds]]
metadata_prompt = f'{normalized_prompt} -S{results[0][1]}'
file_writer.save_image_and_prompt_to_png(
grid_img, metadata_prompt, filename
)
last_seeds = [r[1] for r in results]
except AssertionError as e:
print(e)
continue
except OSError as e:
print(e)
continue
print('Outputs:')
write_log_message(t2i, normalized_prompt, results, log)
print('goodbye!')
def load_gfpgan_bg_upsampler(bg_upsampler, bg_tile=400):
import torch
if bg_upsampler == 'realesrgan':
if not torch.cuda.is_available(): # CPU
import warnings
warnings.warn(
'The unoptimized RealESRGAN is slow on CPU. We do not use it. '
'If you really want to use it, please modify the corresponding codes.'
)
bg_upsampler = None
else:
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=2,
)
bg_upsampler = RealESRGANer(
scale=2,
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth',
model=model,
tile=bg_tile,
tile_pad=10,
pre_pad=0,
half=True,
) # need to set False in CPU mode
else:
bg_upsampler = None
return bg_upsampler
# variant generation is going to be superseded by a generalized
# "prompt-morph" functionality
# def generate_variants(t2i,outdir,opt,previous_gens):
# variants = []
# print(f"Generating {opt.variants} variant(s)...")
# newopt = copy.deepcopy(opt)
# newopt.iterations = 1
# newopt.variants = None
# for r in previous_gens:
# newopt.init_img = r[0]
# prompt = PromptFormatter(t2i,newopt).normalize_prompt()
# print(f"] generating variant for {newopt.init_img}")
# for j in range(0,opt.variants):
# try:
# file_writer = PngWriter(outdir,prompt,newopt.batch_size)
# callback = file_writer.write_image
# t2i.prompt2image(image_callback=callback,**vars(newopt))
# results = file_writer.files_written
# variants.append([prompt,results])
# except AssertionError as e:
# print(e)
# continue
# print(f'{opt.variants} variants generated')
# return variants
def write_log_message(t2i, prompt, results, logfile):
"""logs the name of the output image, its prompt and seed to the terminal, log file, and a Dream text chunk in the PNG metadata"""
last_seed = None
img_num = 1
seenit = {}
for r in results:
seed = r[1]
log_message = f'{r[0]}: {prompt} -S{seed}'
print(log_message)
logfile.write(log_message + '\n')
logfile.flush()
def create_argv_parser():
parser = argparse.ArgumentParser(
description="Parse script's command line args"
)
parser.add_argument(
'--laion400m',
'--latent_diffusion',
'-l',
dest='laion400m',
action='store_true',
help='fallback to the latent diffusion (laion400m) weights and config',
)
parser.add_argument(
'--from_file',
dest='infile',
type=str,
help='if specified, load prompts from this file',
)
parser.add_argument(
'-n',
'--iterations',
type=int,
default=1,
help='number of images to generate',
)
parser.add_argument(
'-F',
'--full_precision',
dest='full_precision',
action='store_true',
help='use slower full precision math for calculations',
)
parser.add_argument(
'--sampler',
'-m',
dest='sampler_name',
choices=[
'ddim',
'k_dpm_2_a',
'k_dpm_2',
'k_euler_a',
'k_euler',
'k_heun',
'k_lms',
'plms',
],
default='k_lms',
help='which sampler to use (k_lms) - can only be set on command line',
)
parser.add_argument(
'--outdir',
'-o',
type=str,
default='outputs/img-samples',
help='directory in which to place generated images and a log of prompts and seeds (outputs/img-samples',
)
parser.add_argument(
'--embedding_path',
type=str,
help='Path to a pre-trained embedding manager checkpoint - can only be set on command line',
)
parser.add_argument(
'--device',
'-d',
type=str,
default='cuda',
help='device to run stable diffusion on. defaults to cuda `torch.cuda.current_device()` if avalible',
)
# GFPGAN related args
parser.add_argument(
'--gfpgan',
dest='use_gfpgan',
action='store_true',
help='load gfpgan for use in the dreambot. Note: Enabling GFPGAN will require more GPU memory',
)
parser.add_argument(
'--gfpgan_upscale',
type=int,
default=2,
help='The final upsampling scale of the image. Default: 2. Only used if --gfpgan is specified',
)
parser.add_argument(
'--gfpgan_bg_upsampler',
type=str,
default='realesrgan',
help='Background upsampler. Default: realesrgan. Options: realesrgan, none. Only used if --gfpgan is specified',
)
parser.add_argument(
'--gfpgan_bg_tile',
type=int,
default=400,
help='Tile size for background sampler, 0 for no tile during testing. Default: 400. Only used if --gfpgan is specified',
)
parser.add_argument(
'--gfpgan_model_path',
type=str,
default='experiments/pretrained_models/GFPGANv1.3.pth',
help='indicates the path to the GFPGAN model, relative to --gfpgan_dir. Only used if --gfpgan is specified',
)
parser.add_argument(
'--gfpgan_dir',
type=str,
default='../GFPGAN',
help='indicates the directory containing the GFPGAN code. Only used if --gfpgan is specified',
)
return parser
def create_cmd_parser():
parser = argparse.ArgumentParser(
description='Example: dream> a fantastic alien landscape -W1024 -H960 -s100 -n12'
)
parser.add_argument('prompt')
parser.add_argument('-s', '--steps', type=int, help='number of steps')
parser.add_argument(
'-S',
'--seed',
type=int,
help='image seed; a +ve integer, or use -1 for the previous seed, -2 for the one before that, etc',
)
parser.add_argument(
'-n',
'--iterations',
type=int,
default=1,
help='number of samplings to perform (slower, but will provide seeds for individual images)',
)
parser.add_argument(
'-b',
'--batch_size',
type=int,
default=1,
help='number of images to produce per sampling (will not provide seeds for individual images!)',
)
parser.add_argument(
'-W', '--width', type=int, help='image width, multiple of 64'
)
parser.add_argument(
'-H', '--height', type=int, help='image height, multiple of 64'
)
parser.add_argument(
'-C',
'--cfg_scale',
default=7.5,
type=float,
help='prompt configuration scale',
)
parser.add_argument(
'-g', '--grid', action='store_true', help='generate a grid'
)
parser.add_argument(
'-i',
'--individual',
action='store_true',
help='generate individual files (default)',
)
parser.add_argument(
'-I',
'--init_img',
type=str,
help='path to input image for img2img mode (supersedes width and height)',
)
parser.add_argument(
'-f',
'--strength',
default=0.75,
type=float,
help='strength for noising/unnoising. 0.0 preserves image exactly, 1.0 replaces it completely',
)
parser.add_argument(
'-G',
'--gfpgan_strength',
default=None,
type=float,
help='The strength at which to apply the GFPGAN model to the result, in order to improve faces.',
)
# variants is going to be superseded by a generalized "prompt-morph" function
# parser.add_argument('-v','--variants',type=int,help="in img2img mode, the first generated image will get passed back to img2img to generate the requested number of variants")
parser.add_argument(
'-x',
'--skip_normalize',
action='store_true',
help='skip subprompt weight normalization',
)
return parser
if __name__ == '__main__':
main()