mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
285 lines
10 KiB
Python
285 lines
10 KiB
Python
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
|
|
|
from functools import partial
|
|
from typing import Literal, Optional, Union
|
|
|
|
import numpy as np
|
|
from torch import Tensor
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
from invokeai.app.models.image import ImageField, ImageType
|
|
from invokeai.app.invocations.util.choose_model import choose_model
|
|
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
|
|
from .image import ImageOutput, build_image_output
|
|
from ...backend.generator import Txt2Img, Img2Img, Inpaint, InvokeAIGenerator
|
|
from ...backend.stable_diffusion import PipelineIntermediateState
|
|
from ..util.step_callback import stable_diffusion_step_callback
|
|
|
|
SAMPLER_NAME_VALUES = Literal[tuple(InvokeAIGenerator.schedulers())]
|
|
|
|
|
|
class SDImageInvocation(BaseModel):
|
|
"""Helper class to provide all Stable Diffusion raster image invocations with additional config"""
|
|
|
|
# Schema customisation
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"tags": ["stable-diffusion", "image"],
|
|
"type_hints": {
|
|
"model": "model",
|
|
},
|
|
},
|
|
}
|
|
|
|
|
|
# Text to image
|
|
class TextToImageInvocation(BaseInvocation, SDImageInvocation):
|
|
"""Generates an image using text2img."""
|
|
|
|
type: Literal["txt2img"] = "txt2img"
|
|
|
|
# Inputs
|
|
# TODO: consider making prompt optional to enable providing prompt through a link
|
|
# fmt: off
|
|
prompt: Optional[str] = Field(description="The prompt to generate an image from")
|
|
seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", )
|
|
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
|
|
width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting image", )
|
|
height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting image", )
|
|
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
|
|
scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" )
|
|
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
|
|
model: str = Field(default="", description="The model to use (currently ignored)")
|
|
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
|
|
# fmt: on
|
|
|
|
# TODO: pass this an emitter method or something? or a session for dispatching?
|
|
def dispatch_progress(
|
|
self,
|
|
context: InvocationContext,
|
|
source_node_id: str,
|
|
intermediate_state: PipelineIntermediateState,
|
|
) -> None:
|
|
stable_diffusion_step_callback(
|
|
context=context,
|
|
intermediate_state=intermediate_state,
|
|
node=self.dict(),
|
|
source_node_id=source_node_id,
|
|
)
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
# Handle invalid model parameter
|
|
model = choose_model(context.services.model_manager, self.model)
|
|
|
|
# Get the source node id (we are invoking the prepared node)
|
|
graph_execution_state = context.services.graph_execution_manager.get(
|
|
context.graph_execution_state_id
|
|
)
|
|
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
|
|
|
|
outputs = Txt2Img(model).generate(
|
|
prompt=self.prompt,
|
|
step_callback=partial(self.dispatch_progress, context, source_node_id),
|
|
**self.dict(
|
|
exclude={"prompt"}
|
|
), # Shorthand for passing all of the parameters above manually
|
|
)
|
|
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
|
|
# each time it is called. We only need the first one.
|
|
generate_output = next(outputs)
|
|
|
|
# Results are image and seed, unwrap for now and ignore the seed
|
|
# TODO: pre-seed?
|
|
# TODO: can this return multiple results? Should it?
|
|
image_type = ImageType.RESULT
|
|
image_name = context.services.images.create_name(
|
|
context.graph_execution_state_id, self.id
|
|
)
|
|
|
|
metadata = context.services.metadata.build_metadata(
|
|
session_id=context.graph_execution_state_id, node=self
|
|
)
|
|
|
|
context.services.images.save(
|
|
image_type, image_name, generate_output.image, metadata
|
|
)
|
|
return build_image_output(
|
|
image_type=image_type,
|
|
image_name=image_name,
|
|
image=generate_output.image,
|
|
)
|
|
|
|
|
|
class ImageToImageInvocation(TextToImageInvocation):
|
|
"""Generates an image using img2img."""
|
|
|
|
type: Literal["img2img"] = "img2img"
|
|
|
|
# Inputs
|
|
image: Union[ImageField, None] = Field(description="The input image")
|
|
strength: float = Field(
|
|
default=0.75, gt=0, le=1, description="The strength of the original image"
|
|
)
|
|
fit: bool = Field(
|
|
default=True,
|
|
description="Whether or not the result should be fit to the aspect ratio of the input image",
|
|
)
|
|
|
|
def dispatch_progress(
|
|
self,
|
|
context: InvocationContext,
|
|
source_node_id: str,
|
|
intermediate_state: PipelineIntermediateState,
|
|
) -> None:
|
|
stable_diffusion_step_callback(
|
|
context=context,
|
|
intermediate_state=intermediate_state,
|
|
node=self.dict(),
|
|
source_node_id=source_node_id,
|
|
)
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = (
|
|
None
|
|
if self.image is None
|
|
else context.services.images.get(
|
|
self.image.image_type, self.image.image_name
|
|
)
|
|
)
|
|
mask = None
|
|
|
|
if self.fit:
|
|
image = image.resize((self.width, self.height))
|
|
|
|
# Handle invalid model parameter
|
|
model = choose_model(context.services.model_manager, self.model)
|
|
|
|
# Get the source node id (we are invoking the prepared node)
|
|
graph_execution_state = context.services.graph_execution_manager.get(
|
|
context.graph_execution_state_id
|
|
)
|
|
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
|
|
|
|
outputs = Img2Img(model).generate(
|
|
prompt=self.prompt,
|
|
init_image=image,
|
|
init_mask=mask,
|
|
step_callback=partial(self.dispatch_progress, context, source_node_id),
|
|
**self.dict(
|
|
exclude={"prompt", "image", "mask"}
|
|
), # Shorthand for passing all of the parameters above manually
|
|
)
|
|
|
|
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
|
|
# each time it is called. We only need the first one.
|
|
generator_output = next(outputs)
|
|
|
|
result_image = generator_output.image
|
|
|
|
# Results are image and seed, unwrap for now and ignore the seed
|
|
# TODO: pre-seed?
|
|
# TODO: can this return multiple results? Should it?
|
|
image_type = ImageType.RESULT
|
|
image_name = context.services.images.create_name(
|
|
context.graph_execution_state_id, self.id
|
|
)
|
|
|
|
metadata = context.services.metadata.build_metadata(
|
|
session_id=context.graph_execution_state_id, node=self
|
|
)
|
|
|
|
context.services.images.save(image_type, image_name, result_image, metadata)
|
|
return build_image_output(
|
|
image_type=image_type,
|
|
image_name=image_name,
|
|
image=result_image,
|
|
)
|
|
|
|
|
|
class InpaintInvocation(ImageToImageInvocation):
|
|
"""Generates an image using inpaint."""
|
|
|
|
type: Literal["inpaint"] = "inpaint"
|
|
|
|
# Inputs
|
|
mask: Union[ImageField, None] = Field(description="The mask")
|
|
inpaint_replace: float = Field(
|
|
default=0.0,
|
|
ge=0.0,
|
|
le=1.0,
|
|
description="The amount by which to replace masked areas with latent noise",
|
|
)
|
|
|
|
def dispatch_progress(
|
|
self,
|
|
context: InvocationContext,
|
|
source_node_id: str,
|
|
intermediate_state: PipelineIntermediateState,
|
|
) -> None:
|
|
stable_diffusion_step_callback(
|
|
context=context,
|
|
intermediate_state=intermediate_state,
|
|
node=self.dict(),
|
|
source_node_id=source_node_id,
|
|
)
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = (
|
|
None
|
|
if self.image is None
|
|
else context.services.images.get(
|
|
self.image.image_type, self.image.image_name
|
|
)
|
|
)
|
|
mask = (
|
|
None
|
|
if self.mask is None
|
|
else context.services.images.get(self.mask.image_type, self.mask.image_name)
|
|
)
|
|
|
|
# Handle invalid model parameter
|
|
model = choose_model(context.services.model_manager, self.model)
|
|
|
|
# Get the source node id (we are invoking the prepared node)
|
|
graph_execution_state = context.services.graph_execution_manager.get(
|
|
context.graph_execution_state_id
|
|
)
|
|
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
|
|
|
|
outputs = Inpaint(model).generate(
|
|
prompt=self.prompt,
|
|
init_image=image,
|
|
mask_image=mask,
|
|
step_callback=partial(self.dispatch_progress, context, source_node_id),
|
|
**self.dict(
|
|
exclude={"prompt", "image", "mask"}
|
|
), # Shorthand for passing all of the parameters above manually
|
|
)
|
|
|
|
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
|
|
# each time it is called. We only need the first one.
|
|
generator_output = next(outputs)
|
|
|
|
result_image = generator_output.image
|
|
|
|
# Results are image and seed, unwrap for now and ignore the seed
|
|
# TODO: pre-seed?
|
|
# TODO: can this return multiple results? Should it?
|
|
image_type = ImageType.RESULT
|
|
image_name = context.services.images.create_name(
|
|
context.graph_execution_state_id, self.id
|
|
)
|
|
|
|
metadata = context.services.metadata.build_metadata(
|
|
session_id=context.graph_execution_state_id, node=self
|
|
)
|
|
|
|
context.services.images.save(image_type, image_name, result_image, metadata)
|
|
return build_image_output(
|
|
image_type=image_type,
|
|
image_name=image_name,
|
|
image=result_image,
|
|
)
|