InvokeAI/ldm/modules/attention.py
2022-09-12 14:34:36 -04:00

350 lines
12 KiB
Python

from inspect import isfunction
import math
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from ldm.modules.diffusionmodules.util import checkpoint
import psutil
def exists(val):
return val is not None
def uniq(arr):
return{el: True for el in arr}.keys()
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def max_neg_value(t):
return -torch.finfo(t.dtype).max
def init_(tensor):
dim = tensor.shape[-1]
std = 1 / math.sqrt(dim)
tensor.uniform_(-std, std)
return tensor
# feedforward
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * F.gelu(gate)
class FeedForward(nn.Module):
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
project_in = nn.Sequential(
nn.Linear(dim, inner_dim),
nn.GELU()
) if not glu else GEGLU(dim, inner_dim)
self.net = nn.Sequential(
project_in,
nn.Dropout(dropout),
nn.Linear(inner_dim, dim_out)
)
def forward(self, x):
return self.net(x)
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
def Normalize(in_channels):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
class LinearAttention(nn.Module):
def __init__(self, dim, heads=4, dim_head=32):
super().__init__()
self.heads = heads
hidden_dim = dim_head * heads
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
def forward(self, x):
b, c, h, w = x.shape
qkv = self.to_qkv(x)
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
k = k.softmax(dim=-1)
context = torch.einsum('bhdn,bhen->bhde', k, v)
out = torch.einsum('bhde,bhdn->bhen', context, q)
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
return self.to_out(out)
class SpatialSelfAttention(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.q = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.k = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.v = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.proj_out = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b,c,h,w = q.shape
q = rearrange(q, 'b c h w -> b (h w) c')
k = rearrange(k, 'b c h w -> b c (h w)')
w_ = torch.einsum('bij,bjk->bik', q, k)
w_ = w_ * (int(c)**(-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
v = rearrange(v, 'b c h w -> b c (h w)')
w_ = rearrange(w_, 'b i j -> b j i')
h_ = torch.einsum('bij,bjk->bik', v, w_)
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
h_ = self.proj_out(h_)
return x+h_
class CrossAttention(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.scale = dim_head ** -0.5
self.heads = heads
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, query_dim),
nn.Dropout(dropout)
)
if not torch.cuda.is_available():
mem_av = psutil.virtual_memory().available / (1024**3)
if mem_av > 32:
self.einsum_op = self.einsum_op_v1
elif mem_av > 12:
self.einsum_op = self.einsum_op_v2
else:
self.einsum_op = self.einsum_op_v3
del mem_av
else:
self.einsum_op = self.einsum_op_v4
# mps 64-128 GB
def einsum_op_v1(self, q, k, v, r1):
if q.shape[1] <= 4096: # for 512x512: the max q.shape[1] is 4096
s1 = einsum('b i d, b j d -> b i j', q, k) * self.scale # aggressive/faster: operation in one go
s2 = s1.softmax(dim=-1, dtype=q.dtype)
del s1
r1 = einsum('b i j, b j d -> b i d', s2, v)
del s2
else:
# q.shape[0] * q.shape[1] * slice_size >= 2**31 throws err
# needs around half of that slice_size to not generate noise
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * self.scale
s2 = s1.softmax(dim=-1, dtype=r1.dtype)
del s1
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
del s2
return r1
# mps 16-32 GB (can be optimized)
def einsum_op_v2(self, q, k, v, r1):
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
for i in range(0, q.shape[1], slice_size): # conservative/less mem: operation in steps
end = i + slice_size
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * self.scale
s2 = s1.softmax(dim=-1, dtype=r1.dtype)
del s1
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
del s2
return r1
# mps 8 GB
def einsum_op_v3(self, q, k, v, r1):
slice_size = 1
for i in range(0, q.shape[0], slice_size): # iterate over q.shape[0]
end = min(q.shape[0], i + slice_size)
s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end]) # adapted einsum for mem
s1 *= self.scale
s2 = s1.softmax(dim=-1, dtype=r1.dtype)
del s1
r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end]) # adapted einsum for mem
del s2
return r1
# cuda
def einsum_op_v4(self, q, k, v, r1):
stats = torch.cuda.memory_stats(q.device)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
gb = 1024 ** 3
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * 4
mem_required = tensor_size * 2.5
steps = 1
if mem_required > mem_free_total:
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
if steps > 64:
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
for i in range(0, q.shape[1], slice_size):
end = min(q.shape[1], i + slice_size)
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * self.scale
s2 = s1.softmax(dim=-1, dtype=r1.dtype)
del s1
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
del s2
return r1
def forward(self, x, context=None, mask=None):
h = self.heads
q_in = self.to_q(x)
context = default(context, x)
k_in = self.to_k(context)
v_in = self.to_v(context)
device_type = 'mps' if x.device.type == 'mps' else 'cuda'
del context, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
r1 = self.einsum_op(q, k, v, r1)
del q, k, v
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
del r1
return self.to_out(r2)
class BasicTransformerBlock(nn.Module):
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
super().__init__()
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.norm3 = nn.LayerNorm(dim)
self.checkpoint = checkpoint
def forward(self, x, context=None):
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
def _forward(self, x, context=None):
x = x.contiguous() if x.device.type == 'mps' else x
x = self.attn1(self.norm1(x)) + x
x = self.attn2(self.norm2(x), context=context) + x
x = self.ff(self.norm3(x)) + x
return x
class SpatialTransformer(nn.Module):
"""
Transformer block for image-like data.
First, project the input (aka embedding)
and reshape to b, t, d.
Then apply standard transformer action.
Finally, reshape to image
"""
def __init__(self, in_channels, n_heads, d_head,
depth=1, dropout=0., context_dim=None):
super().__init__()
self.in_channels = in_channels
inner_dim = n_heads * d_head
self.norm = Normalize(in_channels)
self.proj_in = nn.Conv2d(in_channels,
inner_dim,
kernel_size=1,
stride=1,
padding=0)
self.transformer_blocks = nn.ModuleList(
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
for d in range(depth)]
)
self.proj_out = zero_module(nn.Conv2d(inner_dim,
in_channels,
kernel_size=1,
stride=1,
padding=0))
def forward(self, x, context=None):
# note: if no context is given, cross-attention defaults to self-attention
b, c, h, w = x.shape
x_in = x
x = self.norm(x)
x = self.proj_in(x)
x = rearrange(x, 'b c h w -> b (h w) c')
for block in self.transformer_blocks:
x = block(x, context=context)
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
x = self.proj_out(x)
return x + x_in