InvokeAI/invokeai/app/services/generate_initializer.py
Lincoln Stein bdc7b8b75a fix broken scripts
This PR fixes the following scripts:

1) Scripts that can be executed within the repo's scripts directory.
   Note that these are for development testing and are not intended
   to be exposed to the user.

   configure_invokeai.py - configuration
   dream.py              - the legacy CLI
   images2prompt.py      - legacy "dream prompt" retriever
   invoke-new.py         - new nodes-based CLI
   invoke.py             - the legacy CLI under another name
   make_models_markdown_table.py - a utility used during the release/doc process
   pypi_helper.py        - another utility used during the release process
   sd-metadata.py        - retrieve JSON-formatted metadata from a PNG file

2) Scripts that are installed by pip install. They get placed into the venv's
   PATH and are intended to be the official entry points:

   invokeai-node-cli      - new nodes-based CLI
   invokeai-node-web      - new nodes-based web server
   invokeai               - legacy CLI
   invokeai-configure     - install time configuration script
   invokeai-merge         - model merging script
   invokeai-ti            - textual inversion script
   invokeai-model-install - model installer
   invokeai-update        - update script
   invokeai-metadata"     - retrieve JSON-formatted metadata from PNG files
2023-03-03 20:19:37 -05:00

256 lines
8.5 KiB
Python

import os
import sys
import traceback
from argparse import Namespace
import invokeai.version
from invokeai.backend import Generate, ModelManager
from ...backend import Globals
# TODO: most of this code should be split into individual services as the Generate.py code is deprecated
def get_generate(args, config) -> Generate:
if not args.conf:
config_file = os.path.join(Globals.root, "configs", "models.yaml")
if not os.path.exists(config_file):
report_model_error(
args, FileNotFoundError(f"The file {config_file} could not be found.")
)
print(f">> {invokeai.version.__app_name__}, version {invokeai.version.__version__}")
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
# these two lines prevent a horrible warning message from appearing
# when the frozen CLIP tokenizer is imported
import transformers # type: ignore
transformers.logging.set_verbosity_error()
import diffusers
diffusers.logging.set_verbosity_error()
# Loading Face Restoration and ESRGAN Modules
gfpgan, codeformer, esrgan = load_face_restoration(args)
# normalize the config directory relative to root
if not os.path.isabs(args.conf):
args.conf = os.path.normpath(os.path.join(Globals.root, args.conf))
if args.embeddings:
if not os.path.isabs(args.embedding_path):
embedding_path = os.path.normpath(
os.path.join(Globals.root, args.embedding_path)
)
else:
embedding_path = args.embedding_path
else:
embedding_path = None
# migrate legacy models
ModelManager.migrate_models()
# load the infile as a list of lines
if args.infile:
try:
if os.path.isfile(args.infile):
infile = open(args.infile, "r", encoding="utf-8")
elif args.infile == "-": # stdin
infile = sys.stdin
else:
raise FileNotFoundError(f"{args.infile} not found.")
except (FileNotFoundError, IOError) as e:
print(f"{e}. Aborting.")
sys.exit(-1)
# creating a Generate object:
try:
gen = Generate(
conf=args.conf,
model=args.model,
sampler_name=args.sampler_name,
embedding_path=embedding_path,
full_precision=args.full_precision,
precision=args.precision,
gfpgan=gfpgan,
codeformer=codeformer,
esrgan=esrgan,
free_gpu_mem=args.free_gpu_mem,
safety_checker=args.safety_checker,
max_loaded_models=args.max_loaded_models,
)
except (FileNotFoundError, TypeError, AssertionError) as e:
report_model_error(opt, e)
except (IOError, KeyError) as e:
print(f"{e}. Aborting.")
sys.exit(-1)
if args.seamless:
print(">> changed to seamless tiling mode")
# preload the model
try:
gen.load_model()
except KeyError:
pass
except Exception as e:
report_model_error(args, e)
# try to autoconvert new models
# autoimport new .ckpt files
if path := args.autoconvert:
gen.model_manager.autoconvert_weights(
conf_path=args.conf,
weights_directory=path,
)
return gen
def load_face_restoration(opt):
try:
gfpgan, codeformer, esrgan = None, None, None
if opt.restore or opt.esrgan:
from invokeai.backend.restoration import Restoration
restoration = Restoration()
if opt.restore:
gfpgan, codeformer = restoration.load_face_restore_models(
opt.gfpgan_model_path
)
else:
print(">> Face restoration disabled")
if opt.esrgan:
esrgan = restoration.load_esrgan(opt.esrgan_bg_tile)
else:
print(">> Upscaling disabled")
else:
print(">> Face restoration and upscaling disabled")
except (ModuleNotFoundError, ImportError):
print(traceback.format_exc(), file=sys.stderr)
print(">> You may need to install the ESRGAN and/or GFPGAN modules")
return gfpgan, codeformer, esrgan
def report_model_error(opt: Namespace, e: Exception):
print(f'** An error occurred while attempting to initialize the model: "{str(e)}"')
print(
"** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
)
yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE")
if yes_to_all:
print(
"** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
)
else:
response = input(
"Do you want to run invokeai-configure script to select and/or reinstall models? [y] "
)
if response.startswith(("n", "N")):
return
print("invokeai-configure is launching....\n")
# Match arguments that were set on the CLI
# only the arguments accepted by the configuration script are parsed
root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else []
config = ["--config", opt.conf] if opt.conf is not None else []
previous_args = sys.argv
sys.argv = ["invokeai-configure"]
sys.argv.extend(root_dir)
sys.argv.extend(config)
if yes_to_all is not None:
for arg in yes_to_all.split():
sys.argv.append(arg)
from invokeai.frontend.install import invokeai_configure
invokeai_configure()
# TODO: Figure out how to restart
# print('** InvokeAI will now restart')
# sys.argv = previous_args
# main() # would rather do a os.exec(), but doesn't exist?
# sys.exit(0)
# Temporary initializer for Generate until we migrate off of it
def old_get_generate(args, config) -> Generate:
# TODO: Remove the need for globals
from invokeai.backend.globals import Globals
# alert - setting globals here
Globals.root = os.path.expanduser(
args.root_dir or os.environ.get("INVOKEAI_ROOT") or os.path.abspath(".")
)
Globals.try_patchmatch = args.patchmatch
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
# these two lines prevent a horrible warning message from appearing
# when the frozen CLIP tokenizer is imported
import transformers
transformers.logging.set_verbosity_error()
# Loading Face Restoration and ESRGAN Modules
gfpgan, codeformer, esrgan = None, None, None
try:
if config.restore or config.esrgan:
from ldm.invoke.restoration import Restoration
restoration = Restoration()
if config.restore:
gfpgan, codeformer = restoration.load_face_restore_models(
config.gfpgan_model_path
)
else:
print(">> Face restoration disabled")
if config.esrgan:
esrgan = restoration.load_esrgan(config.esrgan_bg_tile)
else:
print(">> Upscaling disabled")
else:
print(">> Face restoration and upscaling disabled")
except (ModuleNotFoundError, ImportError):
print(traceback.format_exc(), file=sys.stderr)
print(">> You may need to install the ESRGAN and/or GFPGAN modules")
# normalize the config directory relative to root
if not os.path.isabs(config.conf):
config.conf = os.path.normpath(os.path.join(Globals.root, config.conf))
if config.embeddings:
if not os.path.isabs(config.embedding_path):
embedding_path = os.path.normpath(
os.path.join(Globals.root, config.embedding_path)
)
else:
embedding_path = None
# TODO: lazy-initialize this by wrapping it
try:
generate = Generate(
conf=config.conf,
model=config.model,
sampler_name=config.sampler_name,
embedding_path=embedding_path,
full_precision=config.full_precision,
precision=config.precision,
gfpgan=gfpgan,
codeformer=codeformer,
esrgan=esrgan,
free_gpu_mem=config.free_gpu_mem,
safety_checker=config.safety_checker,
max_loaded_models=config.max_loaded_models,
)
except (FileNotFoundError, TypeError, AssertionError):
# emergency_model_reconfigure() # TODO?
sys.exit(-1)
except (IOError, KeyError) as e:
print(f"{e}. Aborting.")
sys.exit(-1)
generate.free_gpu_mem = config.free_gpu_mem
return generate